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Abstract

As robots become more and more ubiquitous in every-day life, they will need to interact with
unfamiliar environments. These interactions require flexible and expandable articulation models,
which can change and expand as the robot makes new observations. The current frameworks for
expressing articulation models are hard to expand, due to their abstract descriptions of models,
which require human implementation work to integrate expansions into existing software. In
the environment of the Robot Operating System (ROS), the most popular robotics application
middleware today, there are standards for exchanging many types of data, but there is currently
no such standard for exchanging articulation models at runtime.

In this thesis, I propose expressing articulation models as symbolic mathematical expressions
and constraints. I argue that this formulation is easier to expand than the existing frameworks
and is thus more scalable. I implement a proof-of-concept framework using this formulation
and showcase its features given multiple use cases. The framework is integrated with the ROS
environment and includes a networked system for managing and exchanging articulation models
in a running system. I evaluate the framework by modeling a number of different articulations,
including some that cannot be expressed in URDF, the current standard framework in ROS. I
also use the implementation in a few small tasks, demonstrating its applicability in an online
system.
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Chapter 1

Introduction

1.1 Motivation

When people envision the robots of the future, many imagine a personal assistant who helps
them with their daily chores. Cleaning the house, putting things away, as the robot does in Fig.
1.1, maybe even go out grocery shopping. All of these tasks require the robot to interact robustly
with its environment.

Figure 1.1 A PR2 robot stowing groceries in a kitchen.

Much like people do, robots will need to be able to look at their environment and determine how
they can interact with it. Is the thing they are looking at the front of a drawer, or a door to
a cupboard? Is the lid of the teapot attached to its body, or will it fall if the pot is tilted too
much? Will a switch control the oven or the stove top?
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Figure 1.2 Examples of unpredictable environments: How do the parts of the cupboard move?

People seem to be able to answer all of these questions intuitively, as they, for instance, start
making an omelette in an AirBnB’s kitchen. But even more surprisingly, people are completely
unfazed when the object they are trying to use turns out to work differently from how they
imagined it, even if it is as unintuitive as the cupboard shown in Fig. 1.2.

While we do not know how it works exactly, we can say that people, in general, have models of
how their surroundings might move or be movable, which enable them to interact with objects
to achieve some goal, like pressing the foot pedal of the trash can to open the lid, to dispose of
a banana peel.

Models that allow these kinds of predictions are commonly called articulation models. Formally,
these models describe the possible relative motion of, usually rigid, bodies, parameterized over
a number of degrees of freedom (DoF). More colloquially, an articulation model of a door would
describe how the door is hinged to its frame, how the handle is bolted to the door and that
pushing the handle downwards will unlock the door.

In robotics today, such models are often hand-coded for the environment a robot is going to
operate in. Unfortunately, it is easy to see how this approach does not scale. Every time a
customer buys a robot to help them around the house, a highly skilled technician would have
to come in and build a detailed model of the customer’s house so the robot can actually do its
job. And when something about the house changes, the technician would have to come back and
document the change. Luckily, there has already been progress made on estimating articulation
models of an unfamiliar environment [15, 31, 21], but so far there is no standardized framework
for expressing these models which is easy to integrate into the various software modules of a
robotic system and easy to expand.

10
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Figure 1.3 Mechanisms of household appliances that robots will need to interact with.

The current standards for modeling articulated objects are very descriptive formats, like URDF1,
SDF2, COLLADA [2], MuJoCo [33] to name a few examples. They describe connections between
objects in an abstract way, e. g. the door is connected to the frame through a hinge, and leave
it up to every user to translate this description to their internal model. This makes the overall
standards very rigid. If one wanted to add the currently uncovered models depicted in Fig. 1.3 to
these standards, they would have to be added by hand to every library, inviting implementation
errors and making it overall unlikely that these extensions would ever be supported universally.

However, when looking at what is expressed through the description it is very basic: A model de-
fines forward kinematic expressions for frames which are parameterized over a number of variables
which are, in turn, limited by constraints. Instead of wrapping this in a high-level description,
which then gets expanded as new challenges arise, such a model could also be expressed directly
as its mathematical expression. The advantage of a direct expression in terms of math is that
mathematical operations are supported much more universally than abstract descriptions and are
also interpreted unambiguously. Unless a new mathematical operator or function comes along,
no model will ever be encountered which cannot be parsed.

Modern robotics systems are made up of many smaller runtime components which communicate
amongst each other, organizing their individual capabilities into a big, coherent behavior. Soft-
ware platforms like the popular Robotics Operating System (ROS) [24] have a lot of established
standards for exchanging data between these many components. There are standard ways of ex-
changing information about locations and rotations of objects, standards for exchanging images
and data from laser scans. But even though an articulation model is bound to change, as the

1URDF: https://wiki.ros.org/urdf
2SDF: http://sdformat.org/spec
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robot interacts with an unfamiliar environment, there is so far no standard for exchanging these
models at run-time. The lack of such a standard hinders progress in the robotics community.
Promising methods are tried in small examples, but rarely updated or expanded to work for an
entire problem space. This is not because they would not work in these spaces, it is just not
feasible for most researchers to do so, because of the time commitment it currently requires.

1.2 Problem Formulation

In this thesis I set out to investigate the problem of building an unambiguous, scalable framework
for describing articulation models on the basis of symbolic mathematical expressions.

The problem is relevant, as future robotic systems interacting with unfamiliar environments
will need dynamic articulation models that can be modified and extended as they observe their
environment. The existing frameworks popularly used in the robotics and computer graphics
world, use a high level of abstraction for describing articulation models. This abstraction means
that background knowledge is needed to interpret a model and to construct the underlying
mathematical structures. On the one hand, this invites errors in every implementation parsing
a model description, on the other hand, it requires a programmer to extend their individual
implementation whenever the description language is updated. Especially the implementation
overhead impedes the scaling of these frameworks when a new mode of articulation – a new type
of connection – needs to be added to the description.

No such framework exists today because of one of the core requirements of these frameworks,
which is, especially in the ROS context, the availability across multiple programming languages.
The common solution – defining an abstract description language and implementing parsers
for all programming languages – is the root cause of the lack of scalability we see in current
frameworks. This could be less of an issue, if the descriptions contained all the data users needed
for their computations and enabled them to read it blindly from the parsed results. However, it
is neither clear, which data users need, nor what a useful representation of that data is.

Expressing articulation models directly as their underlying math is a promising solution to these
problems. Wherever articulation models are used, be it for calculating the position of a robot’s
hand, or for tracking a person in a motion capture studio, they are converted into some rep-
resentation of a mathematical expression for computation. Describing models directly through
sets of expressions leads to unambiguous interpretations and it is unlikely that there will ever
be a model which cannot be expressed as such a set of expressions. In this thesis I investigate
whether describing articulation models as sets of expressions is actually feasible.

I view the challenge of scalability due to implementation overhead as solved if the new articulation
framework enables me to write algorithms which are generic with respect to the articulation model

12
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that they operate on. If this is possible, developers will not have to invest time into updating
their implementations to accommodate new articulations that might be added to the framework’s
repertoire. This will enable the framework to grow and invite others to contribute new modes of
articulation and use existing algorithms on them.

I think it is impossible – or at least infeasible for me - to show, that there will never be an
articulation model which cannot be expressed in the new framework, since that would require
one to know all the possible models that can exist. However, it can at least be shown that progress
has been made on the modeling front. I view it as progress being made if it is possible to express
articulation models in the new framework which could not be expressed before.

1.3 Contributions

In this thesis, I argue for a new approach of building articulation models based on mathematical
expressions and propose a structured way of building an articulation model as a collection of such
expressions. As a practical contribution, I introduce the ROS-package Kineverse, which contains
an example implementation of the articulation model framework and functions for exchanging
them in a ROS environment at run-time. I demonstrate the merit of the implementation with
regards to the modeling challenge by building models of mechanisms which cannot be modeled in
the existing frameworks. With regards to the implementation overhead challenge, I demonstrate
the efficacy of the implementation by implementing algorithms for solving problems in articulated
systems which are fully generic - not using any high-level knowledge about the models they
operate on.

13
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1.4 Structure of the Thesis

This section provides a brief overview of the individual chapters in this thesis. In general, the
thesis is structured to be read sequentially.

Chapter 2 reviews the existing works on estimating articulation models and using them to
generate motion. Finally, it gives an overview of three popular descriptions from the ROS
and computer graphics environment for modeling articulated objects.

Chapter 3 introduces the concept of symbolic math and the formal description of the articu-
lation model. It then presents the implemented software from the perspective of a user and
gives insights into the implementation that are useful for developers. It closes by describing
two additional practical methods that are used in the evaluation.

Chapter 4 demonstrates the efficacy of the implementation and framework in a number of
example scenarios. Among these are the model of a robot, a simple configuration space tracker,
a robot interacting with a kitchen and an algorithm generating a motion problem for unlocking
a lockbox, as well as some other isolated examples.

Chapter 5 reviews the work presented in the thesis, reflects on the results acquired from the
examples, and draws a conclusion with regards to the initial question.

14



Chapter 2

Related Work

2.1 Existing Descriptions of Articulation Models

In this section three existing description formats for articulation models are introduced. The first
two are URDF and its quasi-successor SDF which are the standard description formats used in
the ROS-ecosystem. The third is the COLLADA file format which is widely used in the space of
3D computer graphics.

2.1.1 URDF

The Unified Robot Description Format – short URDF1 – is an XML based description of ar-
ticulated entities which is native to the ROS ecosystem. Its primary purpose is to describe the
structure of robots, however it is also commonly used to model other articulated structures like
furniture or tools. The format’s two core concepts are Link and Joint with links being the rigid
bodies making up the robot and joints connecting them. The format requires the described struc-
ture to be a tree, disallowing kinematic loops. Links share their pose with the joint connecting
them to their parent. The location of the center of mass and inertial frame are defined separately,
relative to that pose. Fig. 2.1 shows the structure of a link in URDF.

Joints encode different degrees of freedom (DoF) between pairs of objects. They can be of six
different types:

Fixed: A static connection between two links, defining their relative transformation to be con-
stant.

Prismatic: A 1-DoF connection between links, allowing the child link to be translated freely
along an axis that is defined relative to the parent’s pose. Bounds for the translation can be
specified.

1URDF: https://wiki.ros.org/urdf
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Figure 2.1 Schematics of the structure of links and joints in URDF. Originally from: https://
wiki.ros.org/urdf/XML/link, https://wiki.ros.org/urdf/XML/joint

Continuous: A 1-DoF connection between links, allowing the child link to be rotated freely
around an axis that is defined relative to the parent’s pose.

Revolute: A bounded version of the Continuous connection type.
Planar: A 2-DoF connection between links, allowing the child link to be translated freely in a

2d-plane defined relative to the parent’s pose.
Floating: A 6-DoF connection between links, allowing the child link to move freely relative to

its parent’s pose.

All movable joints can store information about their static friction and damping.

In URDF, joints cannot be connected to other joints, they can only be used to connect two links.
To model a joint that is not one of the atomic joint types, it is common practice to use empty
links, containing no geometry, to chain multiple atomic joints. This way joints like a planar
connection with one degree of rotational freedom around the plane’s normal can be created.

URDF offers a mimic rule with that the value of a joint’s position can be defined as a function
of another joint’s position. The function is limited to being a linear mapping of the form f(x) =

mx+ b with m scaling the referenced position x and b applying an offset.

Lastly, joints can store data relating to their calibration on a physical robot and so called soft
limits that should be enforced by a motor controller.

2.1.2 SDF

SDF is an XML-based description format developed as a part of the Gazebo robot simulator2.
It can be used to model individual objects, as well as entire simulated worlds, including lighting
2Gazebo simulator: http://gazebosim.org/
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settings and physical forces like gravity and winds. For the purpose of this thesis, the following
overview is limited to the features relating to articulation.

Articulated objects are referred to as models. Models define Links, Joints, and Frames. Frames
are defined in relation to other frames, or their defining parent, and can thus be used to create
static transformations without using fixed joints as helpers.

Different from URDF, links in SDF can specify their own poses relative to a frame or joint. They
can additionally define a pose for their inertia tensor and center of mass.

Like URDF, SDF defines a set of atomic joint types3:

Fixed: A static connection between two links, defining their relative transformation to be con-
stant. Analogous to URDF’s fixed joint type.

Prismatic: A 1-DoF connection between links, allowing the child link to be translated freely
along an axis which is defined relative to the parent’s pose. Bounds for the translation can
be specified. Analogous to URDF’s prismatic joint type.

Revolute: A 1-DoF connection between links, allowing the child link to be rotated around an
axis which is defined relative to the parent’s pose. The rotation can be bounded, making this
joint type a combination of URDF’s continuous and revolute type.

Ball: A 3-DoF rotational joint, imitating a ball and socket connection between parent and child
link.

Screw: A 1-DoF connection, coupling a prismatic joint with a rotation about the axis of trans-
lation.

Universal: A 2-DoF rotational joint, constraining one axis of rotation.

As in URDF, joints cannot be connected directly to other joints. For the types with higher
degrees of freedom, a second axis is specified in the joint. The pose of a joint is determined in
reference to the child link and not the parent. The pose of the joint relative to its parent is
determined from the initial pose of the links in the model. Fig. 2.2 shows the difference in the
models. In addition to static friction and damping, a spring stiffness and reference point can be
set per axis.

2.1.3 COLLADA

COLLADA [2] is an open XML format for exchanging assets among 3D graphics applications and
is widely supported in that field. Originally created at Sony Computer Entertainment, most of
its functionality focuses on visual assets. It provides methods for describing articulated systems
in terms of their kinematics and dynamics, and since version 1.4 also descriptions of rigid body
physics and constraints. Collada is an extremely rich format, making it impossible to fully explore
3SDF version 1.6 defines additional types, but it is not clear what they do exactly as they are undocumented.
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Figure 2.2 Differing joint models in SDF (left) and URDF (right). SDF schematic: http:
//sdformat.org/tutorials?tut=spec_model_kinematics&cat=specification& (Apache
2.0)

here, however, a few basics need introducing before looking at the descriptions of articulated
systems in this format.

At its core, Collada separates between libraries and instances of data. As an analogy to object
oriented programming: Libraries define classes and instances are objects of these classes. Each
Collada file consists of a number of libraries, e. g. geometry, animations, articulated systems, etc.
The data from these libraries is then instantiated within the context of a scene. Collada supports
scoped and non-scoped identification of objects and allows for the definition and binding of
parameters to either expressions, or other parameters, or constant values.

Like the previous models, Collada’s kinematics model consists of links and joints with links, again,
being rigid bodies and joints connecting links. Unlike the previous joint descriptions, Collada’s
description always models joints as compounded degrees of freedom, which are combinations
of rotations and translations. Collada supports parameterized structures, with parameters that
can be bound to constant values, other parameters or expressions specified in MathML 4. These
parameters can be used to recreate the mimic-relation of URDF joints, or SDF’s Screw type.
However, not all elements can be controlled this way. The axis specification of an individual degree
of freedom, for example, does not support this mechanism. Collada’s kinematic model affords
the creation of closed-loop systems, which are impossible to create in the other two formats. The
beginnings and ends of such a closed loop need to be marked explicitly as such and cannot be
defined implicitly by the kinematic structure.

Collada defines a second joint model specifically for physics simulation which exists separately
from the main articulation model. Instead of stacking degrees of freedom, it defines only one type

4MathML: https://developer.mozilla.org/en-US/docs/Web/MathML
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of constraint which can connect one rigid body to another, or to a frame. Different joint types
are modeled by limiting the degrees of freedom of a connection. The limits come in the form
of bounds on the translation between two objects and bounds on the objects’ rotation around
the axes of the reference frame. This model is shared by the popular PhysX and Bullet physics
libraries. It is easy to see how this formalism can be used to model all joint types defined in
URDF and most joints defined in SDF, except for the Screw type, since this type requires a
model of dependence between motions in different dimensions, e.g how a rotation around the
screw axis always has to be matched by a proportional translation along the same axis.

To accommodate special functionality needed by its users, Collada provides the concept of tech-
niques. Techniques provide additional information needed to interpret a file correctly. Aside from
a set of common techniques which need to be implemented to conform with the Collada standard,
users can define their own techniques, which others have to then implement in their system to
load a given file correctly. In this way a technique can be used to communicate about a missing
implementation, though it does not have to provide a description of what is actually missing.

2.1.4 Conclusion

There are multiple description frameworks in existence today, which can be used to express
articulated systems. The aforementioned three take a descriptive approach to expressing the
types of connections between two objects. URDF is the best supported and most widely used
format in the ROS environment. While SDF extends the modeling capabilities of URDF, its use
is mostly limited to the Gazebo robot simulator. In the world of ROS, Collada is mostly used as
container for exchanging 3D geometry. It does have the ability to express articulated systems,
and the inclusion of mathematical expressions gives more freedom to its users than the other two
formats offer. However, excluding expressions from the axes of its joints also limits the kinds of
models that can be expressed.

2.2 Practical Uses of Articulation Models

In this section I will give an overview of the different uses of articulation models in robotics
today, to give an impression of typical use cases and algorithmic requirements for these cases.
The examples are used in part to motivate the practical examples in Chapter 4. I group the
usages of articulation models into the fields of perception and robotic manipulation.
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2.2.1 Articulation Models in Perception

There are many tasks in the space of perception for robotics. There are more general computer
vision tasks like recognizing people and individual objects and there exist more specialized tasks
which are specifically relevant for robotic manipulation. One of these problems is estimating the
pose of an observed object. While much object manipulation work in robotics today is working
with loose items, there are cases in which articulated objects, typically doors and drawers need
to be manipulated. The interaction requires the poses of the objects to be estimated before they
can be manipulated. Articulation models can help with solving these problems, as they restrict
the plausible poses of objects.

Using articulation models to track the motions of multiple connected bodies has a long history in
the field of human pose and motion tracking. Using some articulation model of the limbs, helps
to reduce the search space of a tracker down from more than 50 degrees of freedom to 32 or less,
making the problem more tractable.

In recent times, not much emphasis has been placed on exploiting articulation models to locate
objects in the field of perception for robotic manipulation. Older works like Drummond et al. [8]
and Comport et al. [6] use articulation models in combination with non-linear optimization
techniques to track articulated objects. More recent work by Desingh et al. [7] models the task
of extracting the configuration of articulated objects as a probabilistic graph problem, similar to
previous work on human motion tracking by Sigal et al. [29]. The nodes in their graph model
the links of the object, while the edges model the object’s joints. The joints are used to define
potential functions that rate the likelihood of two object poses given the type of the connection.
The potential functions are used to filter implausible object poses, improving the overall estimate.

The main focus in the field of robotic perception has been on estimating an articulation model
from, mostly visual, observations. As Katz et al. [15] point out in 2008, previous methods in the
areas of robotic manipulation and perception assume an articulation model as given. In this early
work they, estimate the articulation of rigid bodies on a plane from a 2D-image stream. They do
so by clustering image features into rigid structures and then matching the relative trajectories
of these structures to either a revolving, or prismatic connection.

Sturm et al. [31] present a comprehensive formulation for the problem of estimating an articulated
structure consisting of multiple bodies. Their approach solves both the problem of determining
the kinematic structure as a graph Ĝ, as well as the type of the individual connections. They do
so by finding a connection modelM with a parameterization θ to explain a series Dij of observed
relative poses of objects i and j, as in Eq. 2.1. The connection modelsM are either selected from
a predetermined set of models, which includes rigid, prismatic, or rotational connections, or by
a model that is learned from observations.
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M̂ij , θ̂ij = arg max
Mij ,θij

p (Dij | Mij , θij) (2.1)

The probability of a model is assessed using an inlier function which uses inverse kinematic pro-
jection f−1 : SE(3)→ q, projecting a pose into a connection’s configuration space. The projected
configuration is used to compute the forward kinematic transformation, which is compared to
the observed transformation, to judge the model’s accuracy. Once the most likely pair-wise con-
nection is found, the most likely kinematic tree can be found by maximizing the joint probability
of all edges in the tree. As an extension to their model, they introduce a method for determining
the number of degrees of freedom of an observed model, which enables them to detect closed
kinematic chains.

While Katz et al. do not explicitly state all the details of their method, it does stand to reason,
that they, like Sturm et al. , require an inverse kinematics function with which they can project
an observation into the configuration space.

Both of the described approaches rely on observing motions to estimate the articulation model
and cannot act before they do so. Katz et al. are able to refine their articulation model by
interacting with the object as they demonstrate in [16], but do rely on observations to construct
the initial model.

Jain et al. have investigated the robotic opening of unfamiliar doors and drawers using Equilib-
rium Point Control [14, 13]. They use a simple Cartesian space controller and a hypothesis of the
underlying articulation model to operate doors and drawers using a robot. Incrementally, they
calculate new equilibrium point – a point where the endeffector (e. g. gripper of the robot) would
settle if no external force is applied – and use the Cartesian controller to move the endeffector
to the point. They record the Cartesian path of the endeffector and fit a rotational joint to that
path.

Sturm et al. utilize Jain et al.’s equilibrium point control approach to manipulate objects [30].
They start the interaction by manually specifying a grasp point and endeffector orientation in
a 3D point cloud and giving a direction for an initial motion. As the motion is executed, the
manipulated object is observed and the observations are used to update the articulation model.
Rühr et al. [27] present a generalized framework for operating doors and drawers in a kitchen
environment. They combine the estimation framework by Sturm et al. and impedance control
with a detector for handles. Using theses systems, their robot is able to grasp handles, pull them
towards itself, and estimate an articulation model from the observation. Once the model has
been estimated, the framework stores that information in a semantic map.

Martín et al. [19] present an online algorithm for estimating articulation models and tracking
object poses at the same time. While Sturm et al. [31] required markers to detect their objects,
Martín et al. use multiple recursive Bayesian filters to cluster features into objects, determine
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these objects’ motions and estimate the articulation model from this estimate. Like in the previous
approaches, the articulation model is estimated on the basis of relative poses of object pairs. Per
object pair and supported connection type (fixed, prismatic, revolute), one recursive Bayesian
filter is maintained. If none of the filters are consistent with the observed motion, the object
pair is assumed to be disconnected. Their articulation model supports closed kinematic chains,
as it does not build a complete kinematic graph, unlike the previous approaches. In a number of
experiments, Martín et al. demonstrate their approach’s ability to accurately predict and track
the articulation model of books, doors, drawers, a globe and a human head. As a limitation of
their system, Martín et al. point out that it still needs to observe an initial motion, before it
can act. Later, they combine this visual online algorithm with a compliant control scheme to use
both visual and proprioceptive observations to estimate single articulations interactively [20].

In the works showcased so far, interaction strategies for articulated objects are quite limited. Höfer
et al. [12] focus on extracting kinematic background knowledge from interactions. Their system
generates rules which predict what kind of articulation will be observed given an interaction and
a set of object properties. For example: If X is a handle which is attached to object Y , which is
attached to frame Z, then pulling X away from Y is likely to reveal that Y and Z are connected
with a revolving joint. By learning these rules, Höfer et al. implicitly generate a prior on the
likely articulation model of an object and can use this information to interact with the object in
a way which will help them gather data on their hypothesis. In this initial work, the actions that
can be chosen are atomic interactions like pushing towards an object or pulling away from it, or
rotating it in a particular direction. In a follow-up work [11] this set is simplified to be either
a push, or a pull with a vector denoting the direction of the applied force. In both works, the
experiments are carried out in a simulation environment, in which the actions can be carried out
directly on the objects in question. Initially introduced in [12], the model cannot only express
rigid, prismatic, or revolving connections, but also conditional degrees of freedom e. g. the locking
relationship between doors and door handles.

Works like the ones by Höfer et al. are focused on determining the complete articulation model
of a scene. Strategies for examining larger articulated structures were first proposed by Otte et
al. [23] who formulate a belief over object types, joint types and limits, and dynamics properties
and then propose different action strategies for interacting with objects in the environment.
Similar to Höfer et al., their interactions are limited to being a simple push, and the joints
can be revolving or prismatic. The effect of the action is observed as 3D object trajectory and
integrated into the belief state using the method by Sturm et al. [31]. The two best performing
methods select an interaction based on either the expected decrease in belief entropy, or the
entropy in the belief about an individual object.

Hausman et al. [10] focus explicitly on selecting actions to reduce the posterior of their belief
over an individual articulation. They model their articulations similar to Sturm et al. and use
their approach to integrate observations into their belief over the articulation model. For their
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interactions, Hausman et al. sample a number of directions in which their robot could push or
pull an object. For each direction they asses the potential change in the posterior and select an
action according to this metric.

Recently the interest in structures with conditional degrees of freedom has increased, e. g. systems
like doors which are locked by a handle. Kulick et al. [17] explore the space of conditional joint
structure estimation by formulating a probabilistic model of dependency structures and proposing
a strategy to explore them efficiently. They assume the articulation model to be given and focus
only on estimating the dependency structure. In a later work by Baum et al. [3] this assumption
is relaxed to only knowing about movable parts, but not their individual articulation.

Conclusion

In this section I have presented an overview of methods that perceive articulation models in
one way or the other. Some, like [6, 8, 29, 7] exploit the spatial restrictions created by these
models to solve high-dimensional problems efficiently. Others, like [15, 14, 31, 27, 12, 19, 23, 10]
focus on estimating articulation models from observations. Independent of visual observations,
e. g. [15, 31, 12, 19], or proprioceptive feedback [14, 27, 20], all of these approaches rely on the
existence of an inlier function, which can rate the compliance of different articulations with
the made observations. This inlier typically uses an inverse kinematic function and a projection
function, that can project a relative pose of two objects into the model’s configuration space and
then determine the model’s relative pose based on this projection. With the exception of [31,
12, 17, 3], all introduced methods are evaluated exclusively on static, revolving, and prismatic
connections. Sturm et al. [31] introduced a learnable connection, but that type is not present
in the other works, despite the wide spread use of their method. The models in [12, 17, 3] add
conditional degrees of freedom to the common connection set.

All in all, there seem to be robust methods for estimating the articulation model of a set of
observed objects. There is a chance these methods can be generalized to work for arbitrary
articulation models, as long as there is a way of solving the inverse kinematics of the model.

2.2.2 Articulation Models in Motion Generation

Though every robotic interaction with a door or drawer is a manipulation of an articulated
objects, there is not much work in this field that uses more general articulation models to generate
motion. In this section I will collect a number of the existing works, and then look at some motion
generation methods and how they could relate to generating interactions with articulated objects.
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To interact with an articulated object, sampling based trajectory planning methods tend to
sample a number of endeffector poses for the gripper of the robot, given an established grasp.
They then use an inverse kinematics solver to generate a configuration space trajectory for
operating the object. This approach is used in [4, 5, 27]. Commonly, when the state space of the
system increases and the constraint manifolds become more narrow, sampling based approaches
tend to partition the problem. Chitta et al. [5] use a PR2 robot to operate a door while utilizing
both its omnidirectional base and arm. They partition the problem into finding locations for the
base using a graph structure and configurations for the arm in those locations to solve the task.
In a more recent work, Burget et al. [4] use a bipedal robot, the Aldebaran Nao IV, to operate
a cabinet door and a drawer. The robot’s 21 DoF and stability requirements prevent them from
directly sampling the configuration space of the robot, since most samples would not satisfy these
constraints. To get around this problem, they part the problem by generating a set of stable poses
and then only generating a trajectory for the 5-DoF arm. While sampling algorithms perform
quite well in high-dimensional configuration spaces, they do rely on a successful sampling strategy
for the configuration space trajectory. The narrowness of the constraint manifold created by
stability, constraints and articulation constraints make sampling largely unsuccessful. In general,
the trajectory planning methods require an existing model of an object’s articulation.

When lacking an articulation model, a control approach is needed to interact carefully with
objects. A very simple, but surprisingly successful method is the equilibrium point control by
Jain et al. [13], as mentioned in the previous section. They build on the Equilibrium Point
Hypothesis, which posits motion to be controlled by an ever shifting Equilibrium Point, a point
where an endeffector would settle in the absence of external forces. In line with this hypothesis,
they incrementally generate a new Cartesian Equilibrium Point (CEP) at every control cycle,
find a matching point in joint/configuration space and command their robot to move to that
configuration. As it moves, the position of the endeffector is monitored and its trajectory matched
to one either a revolute, or a prismatic joint, informing the generation of the next CEP. As pointed
out before, this method of control is used by Rühr et al. [27] for the initial interaction with an
object when the articulation model is not yet know. After estimating the model, they rely on
planning methods for further interactions.

A commonality of both of these strategies is the use of a forward-model mapping a joint position
to a pose in Cartesian space, which is then either used as next CEP, or as an endeffector trajectory
in combination with other poses. In a control approach like CEP, the forward model is not strictly
necessary, as the motion could also be generated by using velocity control where the endeffector
velocity ẋ is generated as ẋ = J(q)q̇ with q ∈ R being the articulated joint’s position and J
being the jacobian of the grasped point. This formulation is utilized by Martín et al. [20]. The
Jacobian can also be used to compute an endeffector trajectory by integrating ẋ.

While sampling based methods tend to struggle with tightly constrained motion problems, opti-
mization based trajectory planning methods have turned out to be quite successful in planning
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motions under a multitude of constraints. Although on paper optimization based methods should
lend themselves to manipulating articulated objects, there seem to be no works explicitly tackling
this problem. In the following I will give a brief overview of existing optimization based motion
generation methods, since they should work well for manipulating articulated objects and since
I use one of them in the evaluation chapter of this thesis.

Ratliff et al. present CHOMP [26], the first motion planner in this family of methods. They opti-
mize the cost U of a trajectory of n configuration space points. The cost term is composed of a cost
for closeness to obstacles and a cost for trajectory smoothness. They use the gradient of this cost
function to formulate a simple update rule for their trajectory, satisfying both smoothness and
obstacle avoidance at the same time. In sampling based planners trajectory smoothing is typically
a post-processing step. Burget et al. [4] point out that this is problematic when manipulating
articulated objects, as the smoothing does not maintain the desired endeffector trajectory. One
of the core problems of the optimization approach is that it requires the cost and constraint func-
tions to be smooth and differentiable. This is not the case for object collisions, as they are binary
events. Ratliff et al. work around this problem, by pre-computing a singed distance field for their
environments which they can then query during the optimization. Schulman et al. [28] present
TrajOpt, a successor to CHOMP and do a quantitative comparison with existing sampling based
planners. While CHOMP uses an unconstrained gradient descent and models all constraints as
high costs, TrajOpt formulates motion planning as non-convex constrained optimization problem
which it solves using convex approximation and quadratic programming. Schulman et al. incor-
porate collision avoidance by computing minimal translations between object pairs and using
these as penalties. They also include a formulation for continuous time collisions, which is based
on swept volumes. Their method uses the collision checking functionality from the Bullet5 physics
engine. Their comparison with sampling based methods from OMPL [32] and MoveIt!6 shows
their method to be applicable to a wide variety of highly constrained problems with many degrees
of freedom (up to 28), while being at least twice as fast as the competing methods.

The querying of an external collision detection library, as done by TrajOpt, yields only a poor
approximation of the geometry in the environment, since the query only returns a direction and
a signed distance. Ratliff et al. [25] try to solve this problem by viewing obstacles as a part of
the problem domain and not as gaps in it. To do so, they discuss the relationship of gradient
based trajectory optimization and Riemannian manifolds and propose a cost function which
integrates obstacles into the gradient, naturally making the generated trajectory collision free.
They demonstrate that their method safely navigates around thin obstacles, which is a problem
in query based approaches. However, the method relies on local coordinate spaces which follow
obstacles’ surfaces, which are easy to find for geometric primitives, but hard to find for arbitrary
shapes.

5Bullet physics engine: https://pyBullet.org/wordpress/
6MoveIt: https://moveit.ros.org/
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Most works using optimization methods for motion generation seem to focus on pick and place
item manipulation and obstacle avoidance. The work most closely related to using articulation
models in this field, seems to be the work done by Toussaint on Linear-Geometric-Programming
(LGP). Toussaint first introduces the concept in [34] as a method for integrated task- and motion
planning (TAMP). LGP optimizes trajectories over switching kinematic conditions, producing a
feasible solution for a complex high-level goal. In the specific publication, the goal is given as
a function rating height and stability of a tower constructed from pillars and planes. Planning
the individual motions, requires the ability to model varying kinematic conditions affecting the
trajectory. The kinematic conditions are modeled as additional constraints on the underlying op-
timization problem, e. g. a grasp is defined by equality constraints, forcing endeffector and object
pose to be equal. In a later work [35] the LGP approach is expanded to include a dynamics model
and more kinematic conditions are added. However, these recent additions venture more into the
space of inverse or goal directed dynamics, than they do into articulated object interactions.

As a final work in the space of optimization based motion generation, I would like to point
out Giskard, an optimal control based approach. The approach is used to generate motions in
Chapter 4 of this thesis.

In its first introduction [9], Giskard is used to learn pouring motions from demonstrations. The
task is described as constraint-based motion control problem, which uses a simplified version
of the task specification language introduced by Aertbeliën et al. [1]. Using this specification
language, a task can be expressed as a set of hard and soft constraints. The control problem is
given as a function f : Rn → Rm which computes joint velocities q̇des given a vector of observed
variables o:

q̇des = f(o) (2.2)

It is assumed, that the joint positions q are a subset of the observed variables o. The constraints
of the task are applied to the following optimization problem that lies at the heart of f :

mins sTHs

s.t. lA ≤ As ≤ uA,

l ≤ s ≤ u

(2.3)

With H being a diagonal weighting matrix and A holding the Jacobian of the constrained
expressions. The vectors lA,uA hold the lower and upper bounds of the constraints, l,u directly
constraining the vector s. The soft constraints of the task are encoded by extending s to include
a set of slack variables ϵ ∈ Rp for p soft constraints. Using these variables to satisfy the problem
is penalized using the weighting matrix H. The slack variables are incorporated into the task
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optimization by adding an identity mapping to A: A =

[
J Ip×p

]
. All parts of this problem are

functions of the vector of observed variables o and thus are recomputed at every control cycle.

Conclusion

In this section I have given a brief overview over a few methods for generating robotic motion
with a special focus on manipulating articulated objects. Sampling based methods rely primarily
on projections from an object’s configuration space to a pose in Cartesian space, for which they
can then solve an inverse kinematics problem. Optimization based methods rely primarily on
the availability of differential information for their task space, to generate motions. While most
of the showcased control methods use a projection to Cartesian space to define the next goal
for a positional controller, the same behavior could be achieved by using the gradient of the
articulation to locate a next point in space. All in all, it should be possible to generalize these
methods to arbitrary articulation models, as long as the models define a forward kinematic or a
gradient with respect to their configuration variables.
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Chapter 3

Methods

In this chapter I introduce the implemented Kineverse framework. I do so from two different
perspectives. The first perspective is that of a user who wants to use Kineverse to create and
use articulation models. The second perspective is that of a developer, who wants to understand
and extend the framework.

Before the individual perspectives can be explored, an understanding of Kinverse’s backbone –
the symbolic math framework – is needed.

3.1 The Backbone: Symbolic Math

3.1.1 Handling Symbolic Expressions

All articulation models in Kineverse are assembled from symbolic, mathematical expressions.
These expressions can contain free variables that can be substituted for numerical values, to
model function evaluation for a set of parameters.

In this thesis, expressions are denoted by greek letters φ,ψ and free variables are denoted by
latin letters a, b, c. To illustrate:

φ = a+ sin b

ψ = b · c
(3.1)

In the example above φ,ψ are two expressions with two free variables each. The sets of free
variables are denoted by V (α). In the case of φ the set of free variables is V (φ) = {a, b}, in the
case of ψ it is V (ψ) = {b, c}. The free variables in φ,ψ can be substituted for other expressions1

1Free variables are also expressions.
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or constant values.

In the space of robotics, the position of all the robot’s joints would be denoted by a vector q ∈ Rn.
In this thesis, I keep to this notation, even though q is understood more accurately as a mapping,
which maps elements from the set of all variables V to real numbers R, i. e. q : Vn → Rn. Assume
a given q1, which maps b→ 4, this q1 can be applied to the two expressions:

φ(q1) = a+ sin 4

ψ(q1) = 4 · c
(3.2)

Applying q1 to the two expressions yields two new expressions φ(q1), ψ(q1), both of which
have one free variable V (φ(q1)) = {a} , V (ψ(q1)) = {c}. Applying a second mapping q2 =

{a→ 2, c→ 3} to both expressions, yields

φ(q1)(q2) = 2 + sin 4

ψ(q1)(q2) = 4 · 3
(3.3)

Now both expressions have no more free variables and are thus constant. When V (φ) = ∅, then
I call φ grounded. To make it explicit, that an expression is grounded, I mark it by an underscore
e. g. φ(q1)(q2).

Note, that the order in which different q substitutions are applied matters. If q1 = {b→ 4} and
q2 = {a→ 2, b→ 5}, then φ(q1)(q2) ̸= φ(q2)(q1).

3.1.2 Variable Typing

Articulation models describe relative motions of bodies as a function of a set of parameters,
which model the state of the degrees of freedom (DoF) of the model. Given a robot arm with
five joints, the model will express the position of the arms’ rigid parts - its links - as a function
of five variables q1, . . . , q5. In addition to this function, the model might also include limits for
the value range of these variables, since the joints might have a fixed positional range. All of this
can be encoded using the expressions that I introduced in the previous section. However, a robot
does not only have positional limits, but usually also limits for the velocity with which joints
can change their positions, and also further limits constraining joint accelerations and effort.
To express these different aspects of a joint, I add the notion of variable types to the logic of
Kineverse. Types do not change how the expressions behave, but they are used to interpret the
expressions. In this thesis a can refer to the DoF/joint a as a whole or to its position. The other
types are noted as in Eq. 3.4.2

2The actual Kineverse implementation also defines snap, but it is never used in practice.
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a := position of a

ȧ := velocity of a

ä := acceleration of a
...
a := jerk of a

(3.4)

These types are used in two different ways. First, they are used to define constraints on different
aspects of a DoF, like position, velocity, and acceleration constraints. Second, they are used when
creating derivatives of expressions, which will be covered in more detail in the next section.

For this thesis, it is important to note that the φ̇ does not enforce type homogeneity. An expres-
sion φ can contain variables of arbitrary types, but it is important that its velocity expression φ̇
then changes all variable types accordingly. An example:

φ = a− 2ḃ+ c2

φ̇ = ȧ− 2b̈+ 2cċ

φ̈ = ä− 2
...
b + 2cc̈

(3.5)

3.1.3 Augmented Gradients

A feature of symbolic math frameworks is their ability to differentiate expressions with respect
to the variables contained in them. This is useful for methods like trajectory optimization or
optimal control since they rely on the availability of gradients for problem solving.

The gradient ∇φ of expression φ is a column vector of derivatives towards the parameters of φ.
Given φ with V (φ) = {q1, . . . , qn}, its gradient is

∇φ =


∂φ
∂q1

...

∂φ
∂qn

 (3.6)

However, when doing a normal differentiation, the information about with respect to which
variable was differentiated gets discarded:

φ = a

∂φ

∂a
= 1

(3.7)
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Given Kineverse’s variable typing, this becomes a problem, as the type information gets erased. To
prevent this, I introduce a dictionary-like data structure for storing the gradient of an expression
φ. The structure is called augmented gradient and can, again, best be understood as a mapping.
Given an expression φ with V (φ) = {a, b, c}, the augmented gradient ∇φ is

∇φ =

[ ȧ ḃ ċ

∂φ
∂a

∂φ
∂b

∂φ
∂c

] (3.8)

Note, the representation as a matrix is an aesthetic choice, since the actual mapping of variables
to derivative expressions does not have a structure. The set of variables for which derivative
expressions are defined is denoted by K (∇φ). This set is different from V (∇φ), which contains
all variables of all derivatives contained in the gradient. Formally:

V (∇φ) =
x∈V (φ)∪

x

V

(
∂φ

∂x

)
(3.9)

The set K (∇φ) is a superset of the set of first-order derivatives of the free variables of φ, i. e.
{ẋ | x ∈ V (φ)} ⊆ K (∇φ). The sets not being equal has some utility for modeling DoF that
cannot define a forward kinematic expression. An example of such a DoF follows shortly.

The fact that these augmented gradients store an association of variables and expressions is
used for different purposes. The first is the generation of velocity expressions. Given φ and its
augmented gradient ∇φ

∇φ =

[ ȧ ḃ ċ

2 3 4

] (3.10)

then ∇ȧφ denotes the expression that the gradient associates with ȧ, i. e. ∇ȧφ = 2 in the given
example. The velocity expression φ̇ can be created by multiplying every element in K (∇φ) with
the expression it is associated with:

φ̇ =

x∈K(∇φ)∑
x

x∇xφ

φ̇ = 2ȧ+ 3ḃ+ 4ċ

(3.11)

This process motivates the second use of these gradients, to express aspects of a degree of
freedom, which do not define a forward kinematic relationship, i. e. direct correspondences on a
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positional level. A common way of driving a robot around a space is using a differential drive.
A differential drive consists of two individually actuated wheels that are mounted along one
axis. The mechanism is simple but effective: To move in a straight line, both wheels are turned
in the same direction at the same speed. To turn, one wheel is turned faster than the other.
While the relationships of wheel velocity and linear and angular robot velocity can be expressed
easily, there is no mapping from wheel positions to a robot location in the world. The augmented
gradients can be used to include this relationship in an articulation model. Given the equation
for differential drives in chapter 13 of Planning Algorithms [18], let u̇l, u̇r be the velocities of
the left and right wheel and L, r the distance between them and their radius. Let x, y, θ be the

robot’s current linear and angular position and p =

[
x, y, θ

]T
the complete position of the robot.

Then the gradient ∇p can be extended to include additional expressions for u̇l, u̇r:

∇p =



ẋ ẏ θ̇ u̇l u̇r

1 r
2 cos θ r

2 cos θ

1 r
2 sin θ r

2 sin θ

1 − r
L

r
L

 (3.12)

Given that it is possible to add expressions to the gradient for variables that are not included in
the original expression, it is important to point out that these expressions do propagate to other
gradients. When two gradients ∇φ,∇ψ

∇φ =

[ ȧ ḃ

x y

]
,∇ψ =

[ ḃ ċ

u z

] (3.13)

are combined using mathematical operators, their stored expressions are combined to recreate
the effect the operator would have on regular derivatives, as in:
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Figure 3.1 Example of three robot links stored within Kineverse’s data tree.

∇φ+∇ψ =

[ ȧ ḃ ċ

x y + u z

]
∇φ−∇ψ =

[ ȧ ḃ ċ

x y − u z

]

∇φ · ∇ψ =

[ ȧ ḃ ċ

ψx ψy + φu φz

]
∇φ
∇ψ

=

[ ȧ ḃ ċ

ψx
ψ2

ψy−φu
ψ2

φz
ψ2

]

∇φ · v =

[ ȧ ḃ

v · x v · y
]

(3.14)

This list is not complete. In Kineverse the differentiation rules for all common functions and
operations are implemented.

3.2 The Articulation Model

Independent of the kind of user, whether they want to just use Kineverse or extend it, they
must understand how articulation models are represented and understood in Kineverse. In this
section, I describe the articulation model and how it is interpreted.

An articulation model, denoted as A in this thesis, is a tuple of a data tree D and a set of
constraints C, i. e. A = (D, C). The data tree stores the data, e. g. expressions, of the articulation
model at its leaf nodes. The edges of the tree are named, so that each piece of data is uniquely
identified by the path leading to its node. Fig. 3.1 shows an example of three robot links stored
in a data tree.

The set of constraints C encodes the configuration limits of the expressions stored in D. Each
constraint is a three-tuple c = (ιc, υc, φc), which expresses the two inequality constraints ιc ≤ φc
and φc ≤ υc. The tuple can be used to express both inequality and equality constraints. An
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Figure 3.2 Visual representation of Kineverse’s layered structure.

equality constraint φ = ψ can be expressed as c = (ψ,ψ, φ), an inequality constraint φ ≥ ψ can
be expressed as c = (ψ,∞, φ).

The constraints become relevant, when a configuration q is supposed to be applied to the model
A. When a configuration q is applied to A, i. e. A(q) = (D(q), C(q)), the resulting model is
valid if all constraint bounds are satisfied, unless they have free variables. This requirement is
expressed formally in Eq. 3.15.

∀c ∈ C(q) :(V (ιc(q)) ∪ V (υc(q)) ̸= ∅ ∨ ιc(q) ≤ υc(q)) ∧

(V (ιc(q)) ∪ V (φc(q)) ̸= ∅ ∨ ιc(q) ≤ φc(q)) ∧

(V (υc(q)) ∪ V (φc(q)) ̸= ∅ ∨ φc(q) ≤ υc(q))

(3.15)

3.3 System Overview

With the understanding of the conceptual basis of Kineverse - its symbolic math system and its
articulation model - I will now give an overview of the structure of Kineverse, before illustrating
how a user might integrate Kineverse into their project.

The Kineverse framework is structured into multiple layers that build on each other.3

Gradients, Math: The lowest layer of Kineverse is the Gradient layer. It implements the fun-
damental logic to Kineverse’s math system, which is used in all other layers.

Model, Operations: The second lowest layer is the model and operations layer. The model
stores expressions and constraints which form a complete articulation model. Models can be
built up through the sequential execution of operations that read data from the model and
apply changes to it.

Networking: The third layer implements the exchange of Kineverse models within a ROS
environment. It contains a model server, model clients and serialization functionality.

3Unofficially there is a motion module, which contains a rudimentary, QP-programming-based solver for motion
generation that was forked from GiskardPy (https://github.com/SemRoCo/giskardpy).
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Local Networked

Static KinematicModel ModelClient

Dynamic Operation OperationsClient

Table 3.1 Two main dimensions for use cases and the classes that are most relevant for the user.

Tools, Basic Operations: The fourth and last layer implements a variety of tools for visu-
alizing and debugging of models and for integrating them in ROS environments. It also
implements operations for creating common kinematics and for loading articulation models
from URDF.

Kineverse uses a number of external libraries.

Symengine: The Symengine library is a computational algebra system (CAS) which provides
a vast set of symbolic algebraic data structures and operations on them. It is used as the
mathematical backbone for Kineverse.

Bullet Physics: The Bullet Physics Engine4 is a library for simulating rigid- and soft body
physics. It comes with an integrated collision detection library, which is used for geometric
queries by Kineverse.

NumPy: NumPy is one of the most popular math libraries for the Python programming lan-
guage. It adds array data types and fast mathematical operations on them. In Kineverse it is
mostly used to quickly exchange large quantities of data in an out of Bullet.

ROS: The Robotics Operating System (ROS) is one of the most commonly used middleware
frameworks in robotics today. It enables developers to create robotics applications as a network
of encapsulated processes, all of which communicate using one common serialization interface.
Kineverse is developed as an application for the ROS ecosystem.

A visual representation of the layered structure of Kineverse and of which layers depend on which
library, can be found in Fig. 3.2.

3.4 Kineverse from a User’s Perspective

In this section I will describe the different components of Kineverse from a user’s perspective,
by going through a number of use cases. Depending on the use case, a user can use more or less
of Kineverse’s functionality. There are two main dimensions to a use case: Local or networked
use, and static or dynamic model. Tab. 3.1 shows which classes in Kineverse are most relevant
for the use case depending on the dimension.

4https://pyBullet.org/wordpress/
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I will start the exploration of the user perspective with use cases focused on using a static model
locally. Whenever programming is mentioned, it is always assumed that the user is using Python.

3.4.1 Local Static Models: Just Math

The simplest use case is the one in which the users just want to create arbitrary expres-
sions for which they want to generate augmented gradients. In this case, they can import the
gradient_math module, which contains an implementation of augmented gradients and matri-
ces storing augmented gradients. It also contains implementations for common mathematical
functions, like abs, sqrt, log, and trigonometric functions. Further, it implements constructors
for typed variables, common spatial transformations and 3D entities like vectors and points. All
these functions are implemented to handle augmented gradient expressions as parameters and
update their stored gradients accordingly.

3.4.2 Local Static Models: Loading A URDF

A common first use case for any user is going to be loading an existing URDF into a Kineverse
model. This use case is great for exploring the different articulation models that are implemented
in Kineverse.

Kineverse offers a URDF loading function which takes a URDF model as input and adds it to a
Kineverse model. There are three different models implemented in Kineverse: ArticulationModel,
EventModel, and GeometryModel. These three models build upon each other as shown in the
inheritance diagram in Fig. 3.3.

Independent of the model implementation the user uses, the URDF loader always loads a URDF
as flattened structure, collecting all links under a subpath links and all joints under a subpath
joints. In the Python implementation, these subpaths are members of the ArticulatedObject
class, which serves as a container for all the joints and links of an articulated object in Kineverse.
The joints are created as instances of the KinematicJoint class, while links are instances of
RigidBody. All these classes are convenience features for using Kineverse in Python and do not
affect the underlying concept of the articulation model.

Figure 3.3 Inheritance of the three articulation model implementations in Kineverse.
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Figure 3.4 Subtree generated by the URDF loader. Names in typewriter-font are the class names
of the created data structures.

Fig. 3.4 visualizes the structure of the ArticulatedObject, KinematicJoint, and RigidBody.
The URDF loader does not just add mathematical data to the model, but also some metadata
and information about object geometry, as the figure shows.

I will cover how this additional data is used, as I describe the models and the functionality, each
one adds in the following sections.

ArticulationModel

The ArticulationModel is the basic implementation of articulation models in Kineverse. It
stores data in a tree structure and can retrieve the stored data for a given path. The data retrieval
is implemented using Python’s reflection system, so that any Python object can be inserted
into the model and its members are accessible using path syntax without any implementation
overhead. To complete the formal description of an articulation model, the ArticulationModel
also implements a constraint storage and a query functionality to retrieve stored constraints by
the variables they affect.

The query is useful in scenarios like this: The user queries the pose of their robot’s gripper from
the model. They use the pose in some expression φ and then want to compute a configuration q
for φ. Using the constraint query functionality they can retrieve the constraint set C of constraints
that affect the free variables of φ.
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EventModel

The EventModel extends the ArticulationModel by adding a listener functionality to the model,
where the user can register callbacks for model changes. In the case of loading a single URDF
model, however, this functionality is not needed, which is why I will return to it later, when I
discuss dynamic models.

GeometryModel

The GeometryModel extends the EventModel. This model uses the geometry data added to the
Kineverse model to build and maintain a scene in the Bullet Physics Engine5. This scene can
be used to query the closest distance between objects, or query contact points of objects. These
types of queries are common in motion planning tasks, as well as perception approaches that do
physical plausibility checking, such as the one by Mitash et al. [22].

The GeometryModel monitors the type of the inserted data. If a ArticulatedObject, or
RigidBody get inserted into the model, a geometric equivalent is added to the Bullet collision
scene.

As with the constraints in the ArticulationModel the GeometryModel implements a query
function for bodies affected by a set of variables.

An example using the familiar scenario: A user queries their robot’s gripper’s pose from the
model, uses it in some expression φ, and wants to compute a configuration q for φ. They want
to ensure that q is not in collision, so they query the articulation model for the geometry that
is affected by V (φ) and static geometry. The articulation model returns the relevant geometry
wrapped as a CollisionSubworld, which offers a simple function for updating the collision world
using a configuration q and offers two query functions for computing contact points and closest
distances between objects. Using these functions, the user can check whether their chosen q puts
the objects in the scene in collision.

3.4.3 Local Dynamic Models: Changing a Loaded URDF

After loading their URDF file, the users might want to change the loaded model. For instance,
they might want to add a kinematic for connecting the robot’s base to a global frame of reference.
To do so, they need to understand how Kineverse models are built.

5https://pyBullet.org/wordpress/
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Figure 3.5 Incremental building of a model.

A Kineverse model is the result of a sequential application of operations that transform an original
model. The following small example should help to illustrate how models are built by applying
operations. In the example, I store two numbers under paths foo, bar and then combine them
in two expressions. I construct the model in four steps, the process is represented graphically in
Fig. 3.5:

1. Create expression 4 under path foo.
2. Create expression 2 under path bar.
3. Create expression foo · bar under path prod.
4. Create expression sin(prod) under path result.

Note that steps 1 and 2 can be swapped, without changing kinematics of the model. Also note,
that changing the data stored under path foo after step 3 has no effect on prod, or result. The
application of operations is comparable to imperative programming, in that it matters what the
system state is at the time the operation is applied.

These operations are applied to the model and associated with a tag, which becomes their unique
identifier. Tags are used to communicate in which order operations should be applied. By default,
all operations are applied at the end of the sequence. However, the user can also specify that a
new operation should be inserted before or after a specific tag.

The URDF loader creates a model in three phases. In the first it adds the ArticulatedObject
to the model. In the second it creates all the model’s links and tags all the operations as create
link name. In the third it creates all the forward kinematic connections and tags them connect
parent child.

To add a new connection for the base of their robot, the user needs to insert the matching
operation after the base of the robot has been created. Since they know the name of their
base, they know that the tag will be create my_robot/links/my_robot_base. Thus they can
tell the model to apply the operation after the robot base has been created. In keeping with
the convention used by the URDF loader, the new operation should be tagged connect world
my_robot/links/my_robot_base. Fig. 3.6 shows the phases of loading a URDF file and also
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Figure 3.6 Visualization of the process of loading a URDF. Yellow: Parts of the model changed
in a phase. Green: Newly inserted operation by the user.

displays where the user’s operation would get inserted. By default, Kineverse provides two op-
erations for adding robot base kinematics: SetOmnibaseJoint for an omnidirectional base and
SetDiffDriveJoint for a base using a differential drive.

3.4.4 Networked Models

For any bigger application, a user will want to share their model across different programs in
the ROS system. Kineverse comes with a server application that is wrapped in a ROS node. The
server stores an articulation model and publishes updates when the model is changed.

Uploading a URDF to a model server does not require any coding. There are multiple small
scripts in Kineverse that upload URDF models to the model server, optionally adding a new
transform connecting the robot’s base to a global world frame.
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ModelClient OperationsClient

Listen for data changes ✓ ✓
Listen for constraint changes ✓ ✓

Publish model changes 7 ✓

Table 3.2 Comparison of the features of the two Kineverse clients.

3.4.5 Using Networked Models

Kineverse implements two different clients for interactions with the model server. A simple client
for only subscribing to the model (or a part of it), and a more complicated client for making
changes to the model. A brief comparison of their features is shown in Tab. 3.2.

The simpler client implementation ModelClient is useful for users who are not interested in
changing the model, but only in using it within their applications. The client only processes
updates to the model and does not store the sequence of operations that created it. The client
relies on the event handling functionality implemented in the EventModel. The user can register
callbacks for changes to the model. The first type of callback is for changes to the data tree. When
the user wants to receive updates whenever the model of their robot’s gripper is changed, they
would register a callback for the path my_robot/links/gripper. The second type of callback is
for changes to the set of model constraints. If the user is working with an expression φ and they
want to be notified about changes to the constraints affecting φ, they can register a callback that
gets triggered whenever the set of constraints affecting V (φ) changes.

The more complicated client implementation OperationsClient offers the same kind of call-
backs as the ModelClient, but it processes different server updates. It listens to updates about
operations and reproduces the entire model building process on the client’s side. If a user is trying
to estimate the articulation of two objects, they can use the full sequence of operations to create
model hypotheses, evaluate their observation against these and then publish the best fitting model
to the server again. While the client is functionally complete as opposed to the ModelClient,
it also comes with its own significant computational cost, when rebuilding a model from the
sequence of operations.

3.4.6 Visualization and ROS Integration

Independent of local or networked model, and independent of static or dynamic model, the user
will want to integrate their model with the ROS environment and visualize it given a configuration
q. Kineverse comes with tools to do both. First I will cover Kineverse’s integration with TF, then
I will describe the two avenues of visualization, one of which relies on the TF integration.
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TF Integration

One of the major infrastructure systems in the ROS environment is TF6. TF is used to collect
3D frames of reference in the robot’s environment and exchange them among nodes in the ROS
environment. TF comes with a client module for every major programming language, which can
be used to query or update the stored frames. The clients also provide common transformation
functions, e. g. for determining the relative pose of the robot’s endeffector to an object that was
located in the camera’s frame of reference. Due to its availability and utility, TF is the backbone
of many ROS applications and anything that is related to spatial models should be integrated
with it.

Kineverse comes with a TF integration, which enables users to publish the frames in their model
given a configuration q. As with the articulation models, there are three implementations for
TF integration which build upon each other, each one adding a bit more functionality. The basic
implementation ModelTFBroadcaster is relevant for a user who has a model instance and wants
to publish its contained frames. They can instantiate a ModelTFBroadcaster and pass some data
from the model to it. The broadcaster uses Python’s reflection feature to locate all Frame objects,
which is a standard datatype in Kineverse. If the model was loaded with the URDF loader, the
robot links satisfy this requirement, as the RigidBody type is an extension of the Frame type.

The broadcaster provides a function to publish all the found frames given a configuration q. The
relative forward kinematics of all frames is evaluated by the function and published to TF. The
names of the frames in TF is determined by the paths the frames were located at in the model,
e. g. the frame for the robot’s head located at my_robot/links/head will be published with that
path as its name.

In the default ROS installations there is a convenient ROS node called robot_state_publisher
for publishing the frames contained in a URDF file. The node reads a URDF description from the
ROS parameter server and listens for joint state updates on a ROS topic. It keeps re-publishing
the frames to TF at a regular interval.

Kineverse comes with its own version of the robot_state_publisher called the model_tf_publisher,
a ROS node that subscribes to a model on a Kineverse server, listens to state updates on a ROS
topic, and publishes the frames resulting from the last received configuration to TF at a fixed
frequency.

Visualization

Independent of the articulation model users choose or whether they use a networked or local
model, they will want to visualize it. Kineverse offers two main avenues for visualization.
6TF-library: https://wiki.ros.org/tf
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The first visualization builds on the ModelTFBroadcaster from the previous section. Specifically
it is implemented in the class ModelTFBroadcaster_URDF, which extends the original broadcaster.
As with the original implementation users can import the class into their environment and pass
a model to it. Building on the frames found by the base class, the new broadcaster generates a
URDF description of the frames by trying to identify a common root frame. If it can find any
instances of RigidBody among the found frames, it generates matching URDF links containing
the visual geometry of the rigid body. The URDF description is uploaded to the ROS parameter
server and can be visualized in RVIZ using a RobotModel display.

The second method of visualization does not depend on TF, but does require the objects that
should be visualized to be contained in a CollisionSubworld. Given such a world, it turns all
the contained objects into ROS’ default visualization markers, that can be displayed in RVIZ
using a MarkerArray display. This second approach is more flexible than the first one, as RVIZ
does not automatically reload the generated URDF description from the parameter server when
it changes. At the same time it does cause more network traffic and limits users to using the
GeometryModel implementation for their articulation model.

Terminal Tools

One of ROS’ strong features is its varied set of terminal tools ,which can be used to get a quick
and easy look into the running system. Kineverse provides three very small tools to interact with
a running Kineverse server from a terminal. All of them are implemented in the ros_tools ROS
node.

list Lists all paths that are defined in the current model, starting at a given root path. The
depth to which paths are listed can be limited to avoid outputting a superfluous amount of
information.

save Saves the sequence of operations that created the current model to a file in JSON syntax.
The sequence can be limited to include only the operations that modified a given path in the
model.

load Loads sequence of operations from a JSON file onto the server.

3.5 Kineverse from a Developer’s Perspective

In this section I will share information about Kineverse that is aimed at developers who either
want to extend Kineverse, or understand more clearly how it actually works. Initially I will spend
a moment introducing the symbolic math framework that Kineverse is built on. Then I will look
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at the use case of adding new operations to Kineverse which will dive deeper into the workings of
the operation system. Following this, I will describe how models are actually exchanged between
server and clients, because this is no trivial task. Finally I will describe the bridge between the
Kineverse model and the Bullet Physics engine.

3.5.1 The Symbolic Math Backend: Symengine

Kineverse uses the computational algebra system Symengine7 as its symbolic math implemen-
tation. The library provides an adequate set of mathematical functions and contains a matrix
implementation, making it possible to describe articulation models with it.

The Symengine library is the successor of SymPy8, a symbolic math framework implemented
in Python with severe performance issues. The goal of Symengine is to provide the same func-
tionality as SymPy without the performance problems. To enable this, it is implemented in
C++ and has bindings for other programming languages e. g. Python, LISP, Java, etc., making
it widely compatible. To further increase performance, Symengine enables its users to compile
their expressions to native byte code using LLVM9, making function evaluation acceptably fast.

Symengine is not the only existing symbolic math engine that could be used for the purposes of
Kineverse. Casadi10 is another framework that seems to be a strong competitor in this space.
However, Kineverse was started with a special focus on being compatible to the giskardpy11

motion library, which was using Symengine at the time.

3.5.2 Adding new Operations to Kineverse

To add new articulations to Kineverse, a new operation needs to be created, which applies the
articulation to a model. In this section I cover the operations mechanism in more detail, to enable
an understanding of the limitations of the operations API.

Existing articulation model frameworks define their models as a sequence of links and joints,
enforcing that the pose of an object is always the result of a chain of transformations with a
single starting point. One of the goals of Kineverse is not to enforce a specific structure like this.
However, parts of the model still need to be able to build on other parts, e. g. the gripper of a
robot needs the be able to build upon the robot’s shoulder.

7Symengine: https://github.com/symengine/symengine
8SymPy: https://www.sympy.org/en/index.html
9LLVM: https://llvm.org/
10Casadi symbolic math framework: https://web.casadi.org/
11Giskardpy: https://github.com/SemRoCo/giskardpy
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The solution to this requirement is for Kineverse to produce a model from a sequence of oper-
ations, as mentioned before in Section 3.4.3. Such a sequence of n operations o is denoted as
S = (o1, . . . , on). The model that results from a sequential application of the operations in S is
denoted as AS . The application of an operation is denoted by the ⊢ operator, with A ⊢oi ex-
pressing that operation oi is applied to model A. A complete model creation from S is described
formally as

AS = E ⊩S= E ⊢o1 A1 ⊢o2 A2 . . .An−1 ⊢on (3.16)

with E being the empty model. Operations do two things, they read data from an existing model
and write data to the new model. The data is addressed by a set of paths: Do for the set of paths
the operation o reads from, Mo for the paths o modifies. Operations cannot remove any paths
from the model.

The dependency on the Do makes it possible to create sequences which cannot generate a full
model, because an operation is missing a dependency. To check whether a sequence is (syntacti-
cally) correct, it can be checked whether the modified paths of all operations preceding operation
oi form a superset for the paths that oi depends on. This condition is expressed formally in Eq.
3.17.

valid(S) =
n∧
i

(
Doi ⊆

i−1∪
k=1

Mok

)
(3.17)

Implementing a New Operation

To implement a new operation, the user has to subclass the Operation type that is contained in
Kineverse. This type automatically wraps the reading of the dependencies from the articulation
model and the writing to the model. A subclassed implementation has to specify which paths it
will depend on, and which ones it will modify. Both sets need to be known before the operation is
actually applied to the model. A challenge is that the set of modified paths needs to be complete,
meaning it has to include all members of the objects that are being inserted into the model.

The reason for this requirement is a larger dependency checking system, which operates under
the hood of the Kineverse ArticulationModel implementation. While the formal description
of applying an operation to a model describes it as creating a new model, this is not the case
in the actual implementation. The primary reason for this is efficiency. An implementation of
the formal description would require the entire model to be copied every time an operation is
applied to it. This is both expensive and needless, since most of these copies would only be used
to produce another copy. Instead, the existing ArticulationModel is modified in-place, with the
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Figure 3.7 Main channels of communication in the kineverse network. ROS services marked as
s; ROS topics marked as t.

operations implementing a memoization pattern so the reversion of an operation application can
be performed.

The sequence of operations that produce an ArticulationModel is managed by an instance of
a History. This special class maintains a dependency graph of the stored operations, to enable
partial model updates. If an operation is inserted or removed at index i in a sequence S, the
straightforward way of updating the model is to re-apply all operations after i to produce the
new model. However, this can potentially waste a lot of time, as not all parts of the model have
to depend on the removed operation. If robots A,B,C are inserted into A in that order it does
not make sense to rebuild B and C, just because the arm of A was changed.

The History class enables partial updates by creating a dependency graph which stores for every
operation which other operations immediately depend on it. The history also maintains ordered
list structures for all paths, to quickly determine which operations a newly inserted operation
depends on given a timestamp and set of path dependencies.

3.5.3 Understanding the Network Exchange

Kineverse is implemented to be used in the context of the ROS ecosystem. Much like the widely
used ROS module TF, Kinverse consists of one server, storing a model and multiple clients which
connect to it. The server publishes two ROS topics /ko, /km which distribute updates about
the sequence of operations and the built model, respectively. The communication between the
server and the clients is depicted in Fig. 3.7.

The updates distributed on the /km topic come in the form of kineverse/ModelUpdate mes-
sages. They contain a timestamp, a model and a list of deleted paths and constraints. The
model is of type kineverse/Model and only represents a partial model when it is included in
the model update message. It contains two aligned lists, one of paths and one of data. The
path list determines where the aligned data belongs in the data tree of the larger model. The
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data itself is encoded as JSON-strings. This is done to work around the static type system of
ROS messages, which does not allow for any kind of inheritance. In addition to the serialized
data model, the model message also contains a list of constraints, which are encoded using the
kineverse/Constraint message type, which structures a constraint as lower and upper bound,
and a bounded expression. All these three fields are, again, encoded as JSON-strings. Since the
model message only states what the model contains and not what it does not, the model up-
date message adds the list of deleted paths and constraints to communicate what has changed
since the last update. It should be noted that the processing of model updates does not have
a strict Python dependency. The JSON serializations do include identifiers for Python types,
namely as __type__ attributes in JSON-dictionaries, but these are not necessary to parse the
data contained in the model.

Merging model updates into an existing model is straightforward. The data transmitted in the
update is placed in the existing data tree and constraint set, and the paths and constraints listed
as deleted are removed.

The updates distributed on the /ko topic come in the form of kineverse/OperationsUpdate
messages. These messages contain a timestamp, three aligned lists and a list of tags of deleted
operations. The three aligned lists contain tags, stamps, and the associated operations as
kineverse/Operation messages. The operations consist of a string naming their Python type
and a list of JSON-serialized parameters that are required to instantiate the operation. The
string naming the operation’s Python type is used to load the Python module that contains the
operation at runtime and to instantiate the actual implementation.

Merging operations is more difficult. As mentioned in Section 3.4.5, the operations client also
allows to track the operations on the basis of a set of paths the user cares about. This requires
the client to determine which paths the operations in an update actually affect. It does so by
instantiating the operations and checking the paths they modify against a set of paths that are
known to be relevant to the paths tracked by the user. This checking is performed in reverse
temporal order, to enlarge the set of relevant paths as operations require new dependencies.
Once the relevant operations are identified, they are added using a merging algorithm that is
implemented by ArticulationModel.

While the ModelClient cannot make any changes to the model stored on the server, the
OperationsClient can. The changes the client wants to make are communicated to the server
using a ROS service called apply_operations. Since the client is not required to maintain a com-
plete model and since different clients can suggest changes based on their local models, clients do
not determine the timestamps of operations. Rather, they communicate the relative placement
instructions given by the user to the server, who merges them into one model. The resulting
model and order of operations is then broadcast by the server using the /km, /ko topics. The
request to the server is transmitted in the form of a kineverse/OperationCall message, which
contains the operation, itself as kineverse/Operation, an instruction, a tag for the operation
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and a reference tag for relative insertion. The instruction can be to:

Add: Appending the operation at the end of the sequence of operations, or replacing it if its
tag is already known.

Insert Before: Inserts the operation immediately before the operation identified by the refer-
ence tag.

Insert After: Inserts the operation immediately after the operation identified by the reference
tag.

Remove: Removes the operation associated with the given tag from the model.

Internally, both clients use an instance of EventModel to notify their users of changes that have
been made to the model. Like the EventModel, they provide functions where callbacks for path
and constraint updates can be registered.

3.5.4 Understanding Kineverse’s Connection to Bullet

After covering the details of Kineverse’s operation model, I would like to take a moment to
describe Kineverse’s relationship to the Bullet Physics Engine. While the bridge to Bullet is not
necessary for realizing the conceptual core of Kineverse, it is a potential solution to the problem
of connecting arbitrary articulation models with other libraries which perform operations on
spatial models. This bridge is also used extensively in a part of the evaluation, which makes it
worth mentioning.

As stated before in Section 3.4.2, the GeometryModel articulation model implementation auto-
matically populates a Bullet collision scene in the background, as new instances of RigidBody get
inserted into the model. Given a set of variables, the model can assemble a CollisionSubworld,
which contains the bodies affected by these variables and provides the user with simple functions
for updating the bodies’ poses using a q configuration, and for querying the scene about contact
events and smallest distances between objects.

All of these functions are provided by a custom Python binding for the collision detection module
of the Bullet physics engine. This custom wrapper is aimed at fast interoperability of Kineverse
and Bullet, while offloading as much work as possible into the C++ side of the wrapper. The
CollisionSubworld implementation makes use of Symengine’s LLVM compiler to evaluate all
object poses in a single, fast call. To do so, the poses are stacked vertically in one combined
matrix, which is compiled into LLVM. The NumPy matrix that results from the evaluation
can be passed to the custom Bullet wrapper along with a list of objects to update. The C++
implementation extracts the homogeneous transformations from the stacked matrix and updates
the collision scene.
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The query functions do not rely on NumPy for their communication, but they do return struc-
tured Python objects which is not the case in Bullet’s original Python bindings.

The bindings are implemented using pybind1112.

3.6 Practical Methods

In this section I will introduce two methods I developed in the context of Kineverse. The first is an
exploitation of the augmented gradient model to express Boolean logic as real-valued functions.
The second is a short description of translating Kineverse constraints into a Giskard motion
problem. Both of these methods will be used in Chapter 4 during the later stages of the evaluation.

3.6.1 Approximating Boolean Logic

Many complex mechanisms rely on binary switches which constrain the degrees of freedom of
their parts. A prime example are doors, whose mobility is dependent on the pose of the handle,
if they are in their frames.

Storing the gradient ∇ẋφ explicitly, makes it possible to define arbitrary gradients, which are
not related to the definition of f . These gradients can be utilized to define an approximation
of boolean logic in a continuous value space, which can, in turn, aid the search for a satisfying
solution.

The approximation starts with the definition of True as 1.0 and False as 0.0. These truth values
are grounded in R by defining the functions ≺: R × R → R and ≻: R × R → R as in Eq. 3.18
with R being a large real number.

≺ (a, b) =
1 + tanh((b− a)R)

2

≻ (a, b) =
1 + tanh((a− b)R)

2

∇ ≺a,b = ∇b−∇a

∇ ≻a,b = ∇a−∇b

(3.18)

This definition causes the functions to behave analogously to the binary predicates <,>. The
analytical gradients of these functions are practically 0 unless a ≈ b. The gradients of the func-
tions are redefined to encode the general logic of the functions. In the case of ≺ decreasing a,

12Pybind11: https://pybind11.readthedocs.io/en/master/
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or increasing b generally moves the evaluation closer to being true, while the opposite moves the
evaluation closer to being false. While these gradients are not an accurate model of the change
in the value of the function, they do still capture the relative effect that variables in terms a, b
have on the value on the function.

The basic boolean operations ¬̃,⋏,⋎ are defined as

¬̃(a) = 1− a

⋏(a, b) = a · b

⋎(a, b) = ¬̃(⋏(¬̃(a), ¬̃(b)))

∇¬̃a = −∇a

∇⋏a,b = ∇a+∇b

(3.19)

⋎ is defined using the ¬(¬a∧¬b) ≡ a∨b equivalence to avoid adding another saturation function
and defining another gradient.

With these functions it is now possible to define boolean expressions and embed them into a
continuous model.

3.6.2 Building a Giskard Motion Problem

For practical experiments, a way of converting Kineverse constraints and expressions into a
motion problem is needed. This section describes a strategy for converting Kineverse constraints
into a Giskard motion problem. The initial strategy is very simple but unable to cover all cases
of constraints and variables. The later strategies are more complicated and add requirements to
Giskard’s state vector o and update rules for generating trajectories, but manage to cover the
entirety of the Kineverse features.

Giskard Motion Problem Formulation

The Giskard framework was briefly introduced before in Section 2.2.2. In this section I will re-
iterate the problem formulation in greater detail and then describe how to construct a Giskard
motion problem from Kineverse constraints.

As mentioned before, a Giskard motion problem is formulated as minimization problem which
is constrained by m hard and p soft constraints. The cost function is defined over a vector of n
controllable variables and p slack variables. The constraints are defined as follows:
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Controllable Constraints define limits on the vector of controlled variables ċ. They are accu-
mulated in boundary vectors l,u that are used to enforce l ≤ ċ ≤ u. They also assign a weight
scaling the cost of utilizing the controllable variables. For this section, the set of controllable
constraints will be denoted as set Q containing constraint tuples (l, u, ċ, w) where l, u ∈ R are
the bounding expressions, ċ is the controlled variable and w ∈ R is the weighting expression.

Soft Constraints define task objectives which can be disobeyed at a cost. In this section, they
will be accumulated in the set S as tuples (l, u, e, w) with all components being expressions
in R. Each of these tuples expresses the following relationship l ≤ ė+ ϵ ≤ u, where ϵ is a slack
variable that can be used to satisfy the constraint at the cost of wϵ2.

Hard Constraints express non-negotiable constraints for the motion, like the robot’s joint lim-
its. In this section they are collected in the set Z as tuples (l, b, e) that express the constraint
l ≤ ė ≤ u.

These constraint sets are assembled into the following minimization problem:

mins sTHs

s.t. lA ≤ As ≤ uA,

l ≤ s ≤ u

(3.20)

with

s =

[
ċ1, . . . , ċn, ϵ1, . . . , ϵp

]T
H = diag(wq,1 . . . wq,n, ws,1, . . . , ws,p)

A =

∇ċZ 0

∇ċS Ip×p


l =

[
lq,1, . . . , lq,n,−∞1, . . . ,−∞p

]T
u =

[
uq,1, . . . , uq,n,∞1, . . . ,∞p

]T
lA =

[
lz,1, . . . , lz,m, ls,1, . . . , ls,p

]T
uA =

[
uz,1, . . . , uz,m, us,1, . . . , us,p

]T

(3.21)

The components of H,A, l,u, lA,uA can all be parameterized over a vector o, a subset of which
is the current position of the controlled variables c ⊆ o. The generation of the motion is wrapped
as a function calculating a desired velocity vector for the controlled variables:
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ċdes = f(o) (3.22)

Conversion Strategy

There are a couple limiting factors that have to be considered when converting Kineverse con-
straints to Giskard constraints:

• Giskard can only define constraints for the first derivative of a constrained equations, not
for the expression itself.

• Giskard has no built-in notion of time.
• Giskard does not require the value of ċ to be part of o.

The first observation is relevant to translating positional constraints from Kineverse to Giskard. If
there is a constraint in Kineverse (−2 ≤ a ≤ 2), then this constrains the value of a to be within
the interval [−2, 2]. If copied directly to Giskard, this constraint would define (−2 ≤ ȧ ≤ 2),
which leaves the value of a unconstrained. A simple conversion is to subtract the constrained
expression from the boundaries (−2 − a ≤ a ≤ 2 − a), decreasing the value range of ȧ as it
approaches the boundaries of a.

This simple conversion has two problems: It is over constraining ȧ and simultaneously does not
enforce the boundaries of a reliably. Both of these problems are caused by the lack of a concept
of time. Given the Kineverse constraint set C = {(−0.1 ≤ a ≤ 0.1), (−4 ≤ ȧ ≤ 4)}, the Giskard
equivalent would be Z = {(−0.1− a ≤ ȧ ≤ 0.1− a), (−4 ≤ ȧ ≤ 4)}. Given Z, ȧ will always be
limited to the interval [−0.2, 0.2] even tough the original model allows for [−4, 4]. At the same
time, there is no guarantee that a will actually remain within [−0.1, 0.1], since it is not clear of
how long the integration step ∆t will be. This can be rectified by adding ∆t to the converted
constraints:

C ⇒ Z

{(−0.1 ≤ a ≤ 0.1), (−4 ≤ ȧ ≤ 4)} ⇒
{(
−0.1− a

∆t
≤ ȧ ≤ 0.1− a

∆t

)
, (−4 ≤ ȧ ≤ 4)

} (3.23)

For a discrete timestep integration scheme, including ∆t guarantees that a will remain within
its configuration space and make it possible to utilize the full range of ȧ, given that ∆t is small
enough. If the motion is generated as a part of a control loop, ∆t has to be chosen so that it
matches the execution frequency of the loop.
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Chapter 4

Evaluation

In this chapter, the Kinverse articulation model is evaluated. This is done in two stages: First, its
modelling capabilities are showcased in a number of small examples. Then a simulated robotic
system is shown, performing a simple, simulated task in a kitchen environment.

4.1 Modeling Capabilities

In this section I showcase the modeling capabilities of Kineverse. I compare Kineverse’s capabili-
ties to those of URDF, even though URDF is the most limited out of the three available modeling
languages: URDF, SDF and COLLADA. I do so because URDF is the de-facto standard in the
ROS environment and Kineverse was developed with that environment in mind.

I identify a number of different types of articulation models by which I compare the two frame-
works:

Kinematic Chain The simplest type is the kinematic chain, which is a group of bodies con-
nected by joints as a single, open chain. A practical example of a kinematic chain is a robot
arm.

Kinematic Tree The branching, loop-free version of the kinematic chain is a kinematic tree. A
kinematic tree can be used to model a robot with multiple arms, or more generally a system
with multiple endpoints.

Kinematic Loop A kinematic loop is a group of bodies connected by joints in a looping fashion.
When a two-armed robot lifts a tray, the arms and the tray define a loop in which the arms
limit each other’s joint positions.

Linear Dependent Joints A joint is linearly dependent on another joint if its position can
be calculated from the other joint’s position by applying some linear scaling and adding an
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URDF ✓ ✓ 7 ✓ 7 7 7 7

Kineverse ✓ ✓ 7 ✓ ✓ ✓ ✓ ✓

Table 4.1 Comparison of the modeling capabilities of Kineverse and URDF.

offset. Linear dependence is often used to model the behavior of two-fingered pinch grippers,
which have two moving fingers, but only one actual degree of freedom.

Non-Linear Dependent Joints Similar to linear dependence, with the only difference being
that the transformation function does not need to be linear. Such a joint can be used to
express the position of a piston that is being driven by a rotating wheel.

Multi-Dependent Joints A joint is multi-dependent if its position can be determined as a
function of the positions of a group of other joints. This model can be used to model connec-
tions using multiple tendons to control the pose of a link.

Conditional Kinematics A conditional kinematic models the mobility of a DoF based on some
switch conditions. Locking mechanisms like door handles can be understood as conditional
kinematics.

Differential Kinematics A lot of mechanisms encountered in everyday life do not have a
forward kinematic, but do define functions that can be used to predict the velocity of a
property. A common example of such a mechanism in robotics are differential drives, which
do not define a forward kinematic for the position and rotation of a robot, but do define
functions mapping the velocity of a robot’s wheels to its linear and angular velocity.

I show that it is possible to express these different types of articulations by building up a fetch
robot in Kineverse in multiple steps. For the remaining capabilities I build small, self-contained
examples which demonstrate that it is possible to express these kinematics in Kineverse. The full
comparison of Kineverse and URDF is collected in Table 4.1.

Across all steps of building up the fetch robot, I also demonstrate the successful integration
of Kineverse into ROS, by using the kineverse server and its clients to manage the model. To
show that Kineverse is integrated with the central TF-library and the visualization tool RVIZ, I
use Kineverse’s TF-publisher to publish the model’s frames and visualize the complete model in
RVIZ. The dataflow between the different components is depicted in Fig. 4.1.
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Figure 4.1 Components and their dataflow used in the modeling evaluation.

4.1.1 Kinematic Chains

The fetch robot contains multiple kinematic chains. I choose to start at the shoulder_pan_link
and load it up until the gripper_link, excluding the fingers because they split the chain of the
arm into a tree.

I set a number of different joint positions to check that the model was loaded correctly. The
resulting visualization and TF-tree can be seen in Fig. 4.2.

4.1.2 Kinematic Trees

I expand the loaded model of the fetch to include its torso and head, which, together with the
arm, form a kinematic tree. The fingers of the gripper are still excluded, as they involve a linearly
dependent kinematic.

I set a number of different joint positions to check that the model was loaded correctly. The
resulting visualization and TF-tree can be seen in Fig. 4.3.

4.1.3 Kinematic Loops

There are no ways of modeling kinematic loops in either URDF or Kineverse. A URDF file that
includes a kinematic loop will raise an exception in all standard parsers. Kineverse does not
restrict the user from building articulation models with loops, but they will simply override the
forwards kinematic that was previously defined. In a small example:
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Figure 4.2 Visualization of fetch’s arm loaded into Kineverse. First row: Mesh visualization;
Second row: Display of corresponding TF-tree.

Figure 4.3 Visualization of fetch’s torso, arm, and head loaded into Kineverse. First row: Mesh
visualization; Second row: Display of corresponding TF-tree.
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Figure 4.4 Visualization of fetch’s pinch gripper loaded into Kineverse.

If A,B,C,D are frames which are connected by some forward kinematic expression as A →
B → C → D, then applying that expression to D → A will only override the transform of A
and not affect any other object in the loop. This is the case because Kineverse models are built
sequentially.

It is possible to simulate kinematic loops in Kineverse applications by adding constraints to the
model, but then a solver is needed to generate a valid model configuration.1

4.1.4 Linear Dependent Joints

A simple example of a linearly dependent joint can be found in fetch’s gripper. It is a two-
fingered pinch gripper which can only open symmetrically. I load the gripper in isolation and
use the Kineverse infrastructure to set it to a number of different poses and visualize the results.
Fig. 4.4 shows the visualization.

4.1.5 Non-Linear Dependent Joints

For an example of non-linear dependent joints, I use an example from the world of mechanics.
Specifically, I use the rod and piston construction from a car engine to demonstrate that it is
possible, to model this very constrained, non-linearly dependent kinematic chain. Fig. 4.5 shows
such an assembly and its parts.

Given a crank shaft with a crank pin distance of r and a connecting rod length of d, the kinematic
of the shaft transformation TS , the rod transformation TR and the piston transformation TP

can be expressed as a function of a single DoF θ as in Eq. 4.1, where R(x, α) expresses a rotation

1COLLADA has a way of explicitly stating that a system is a loop. This is not afforded as a single operation by
Kineverse’s operational model.
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Figure 4.5 A crankshaft from a car’s combustion engine. Red: Crankshaft; Blue: Crank pin;
Green: Piston; Yellow: Rod connecting crank pin and piston.

around the X-axis by α radians. The result is once again visualized using RVIZ - as can be seen
in Fig. 4.6.

TS = T(v) ·R(x, θ)

TR = TS ·T(0, 0, r) ·R
(

x,− asin
(

sin(θ) r
d

)
− θ
)

TP = TR ·T(0, 0, d) ·R
(

x, asin
(

sin(θ) r
d

)) (4.1)

4.1.6 Multidependent Kinematics

Some robots, like Charlie in Fig. 4.7, use a tendon-like combination of linear actuators to control
their links. These constructions make the pose of the link a function of the positions of these
multiple actuators. I demonstrate that it is possible to create such models in Kineverse by building
a small, artificial example that is comparatively easy to follow.

The example consists of a platform that is connected to a static frame in one point. The connec-
tion allows the platform to pitch and roll over two intersecting axes. The platform is actuated
using two prismatic actuators that are mounted to the same static frame. A physical build of the
example is displayed in Fig. 4.8.

Since the two actuators can only rotate about one axis, both define a triangle in a plane that is
perpendicular the the actuator’s axis of rotation (cf. Fig. 4.8). Each triangle is formed between
the mounting point of the platform a, mounting point of the actuator b, and the point at which
the actuator’s end is hinged to the platform c. The points a,b are constant, while c is not.
However, the distances between the pairs of points are known, which enables the determination
of the triangles’ angles.
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Figure 4.6 A car engine’s piston as an example of non-linear dependence in an articulation model.

Figure 4.7 Robot Charlie as an example of a biologically inspired robotic structure. Multiple lin-
ear actuators connect the hip and upper body of the robot, creating a multi-dependent
kinematic. Charlie is a creation of the DFKI Robotics Innovation Center in Bremen.
(Source: Daniel Kühn, DFKI GmbH)
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Figure 4.8 Physical equivalent of modeled, multidependent kinematic. The two pistons on the
side of the construction control the pitch and roll of the platform. Schematic on the
right shows the triangle problem formed by the actuators.

For the kinematic of the platform, only the angles α are relevant:

αl = cos−1

(
l2 + y2 − x2

2ly

)
αr = cos−1

(
r2 + y2 − x2

2ry

) (4.2)

where x and y are the lengths of the triangle sides, cf. Fig. 4.8. Using these angles the forward
kinematic of the actuators can be constructed as

Tl = TMRMR(Π + αl)

Tr = TMRMR(Π + αr)
(4.3)

where RM is the rotation of the lower side of the triangle in the common frame of reference of the
actuators and the platform. These two transformations can be used to determine the endpoints
of the prismatic actuators pl,pr. The pitch β of the platform is determined from the relative
location of a to the center point 1

2 (pl + pr). The roll γ of the platform is determined by the
slope of the vector from one piston endpoint to the other.

v =
1

2
(pl + pr)

β = arctan2(vy, vx)

w = (R(β)Y) · (pl − pr)

+ (R(β)Z) · (pl − pr)

γ = arctan2(wy, wx)

(4.4)

These results are visualized using RVIZ and can be seen in Fig. 4.9.
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Figure 4.9 A model of a multidependent kinematic. The prismatic actuators on the left and right
control pitch and roll of the T-shaped link.

Figure 4.10 Visualization of the compartment modeled in this section.

4.1.7 Conditional Kinematics

Conditional kinematics can be used to express the switching degrees of freedom of a system
based on some logical conditions. To show that it is possible to model conditional kinematics in
Kineverse, I model a shelf compartment which consists of three parts: The compartment itself,
a door, and a handle. The handle is mounted to the door, which is, in turn, mounted to the
compartment. Fig. 4.10 gives an impression of this setup. The configuration space consists of two
variables d, h, with d being the rotation angle of the door and h being the angle of rotation of
the handle. Each of these objects is associated with a transformation TC ,TD,TH . The door is
setup to rotate around the Z-axis of the compartment, while the handle is set to rotate around
the X-axis of the door:

TD = T(v) ·R(z, d)

TH = TD ·T(u) ·R(x, h)
(4.5)

The function T(v),T(u) in the definition above signifies some constant translations that are
used to move the mounting points of the objects in their parent frames.

To model that the door is locked as long as the handle is not turned at least to a certain angle,
I add constraints on the velocity ḋ using ≺ to check the unlocking condition:
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−∞ ≤ ḋ ≤ (d ≻ ϵ)⋎ (h ≺ x)∞ (4.6)

This constraint can be read as: ḋ can be positive while d > ϵ, or h > x, where ϵ is the threshold
angle at which it the locking mechanism will not catch anymore and x is the angle at which the
handle unlocks the door. This locking constraint is combined with two other constraints which
enforce the positional limits of the door and handle:

0 ≤ d ≤ 1

2
π

0 ≤ h ≤ 1

4
π

(4.7)

4.1.8 Non-Holonomic Kinematics

One of the most popular ways of moving a robot is the differential drive: Two wheels which are
mounted along one axis and can be controlled independently. The differential drive is cheap and
easy to build and allows a robot to go forwards, backwards and turn. Though it is a very common
kinematic, it cannot be expressed in URDF. While URDF can model the existence and the DoFs
of the wheels, it cannot express the effect these are going to have on the motion of the base with
respect to the world.

The kinematic equations of differential drives are well known - e. g. described in chapter 13 of
Planning Algorithms [18].

The velocity equations can be added to the pose of the base by extending its gradient information.
If u̇l, u̇r are the rotation speeds for the left and right wheel, and x, y, θ are the X,Y coordinates
of the base’s pose and θ is its rotation around the Z-axis, then their gradient is extended by the
following:



u̇l u̇r

∇x r
2 cos θ r

2 cos θ

∇y r
2 sin θ r

2 sin θ

∇θ − r
L

r
L

 (4.8)

where r is the radius of the wheels and L is the distance between them. There is no way of directly
visualizing the differential drive model, since it does not effect the robot’s position. The drive
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Figure 4.11 Simple test of the differential drive’s gradients. Wheel speeds are set to constant
values and integrated over time. In order starting from top left: Both forwards,
Right forward, Left forward, both backwards, right backwards, left backwards.

Figure 4.12 A look onto the fetch’s differential drive system.

is evaluated by setting different constant wheel speeds and integrating the evaluated gradients.
Fig. 4.11 shows the resulting trajectories.

4.1.9 Robots

To demonstrate compatibility with existing robot models, I import two robots into Kineverse.

Fetch

Over the course of the previous modeling exercises, the fetch robot has been loaded partially
into Kineverse. As a final step, I load the entire fetch using the default URDF loader. All of the
robot’s constraints can be queried from the articulation model. When the robot is loaded into
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Figure 4.13 Full fetch model loaded into Kineverse. Left: Mesh visualization; Right: TF tree of
the loaded model.

an instance of the GeometryModel class, a representation is automatically created in a Bullet
collision world as the robot is loaded. Setting different variable assignments and rendering the
resulting robot pose to RVIZ, shows that the robot has been loaded correctly.

To improve upon the articulation model of the fetch that can be captured using URDF, I use
the operations’ history feature of Kineverse to connect fetch’s base to the origin frame of the
world using a differential drive kinematic (see Fig. 4.12 for a look at fetch’s drive system). To
check that the gradients are propagated properly to the other links of the fetch, I retrieve the
gradient for the position of the endeffector pG and check that the expressions from the base have
propagated as:

∇pG =



u̇l u̇r ...

̸= 0 ̸= 0 . . .

̸= 0 ̸= 0 . . .

0 0 . . .

 (4.9)

The exact gradient for the X and Y coordinates have been omitted, since they include the
complete forwards kinematic of the arm. The fully loaded, visualized fetch is depicted in Fig.
4.13.

PR2

To show that the fetch is not the only robot that can be loaded into Kineverse, I load a PR2 from
a URDF file. As before, all constraints for the PR2 can be queried from the articulation model
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Figure 4.14 A PR2 loaded into Kineverse and visualized using RVIZ and TF. First row: Mesh
visualization; Second row: TF tree.

and a collision representation is created automatically when the robot is loaded into an instance
of the GeometryModel. Setting different variable assignments and rendering the resulting robot
pose to RVIZ, shows that the robot has been loaded correctly. Fig. 4.14 shows the loaded PR2.

The PR2 has an omni-directional base, which makes it unnecessary to modify the base transform.

4.1.10 Faucet

As a final example in this modeling section, I will look at linking spatial and non-spatial properties
and how they can support reasoning. Consider a simple, modern faucet like the one depicted in
Fig. 4.15. Lifting the handle upwards opens the tap, turning it to the left will make the water
hotter, turning it to the right will make the water colder.

Normal articulation models are limited to expressing facts about the relative motion of objects.
In Kineverse, however, it is possible to model mechanisms which do not only affect the spatial
relations of objects - mostly because Kineverse is largely agnostic about models.
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Figure 4.15 A simple, modern faucet as seen in most bathrooms today.

To model a simple faucet, I define the frame of the handle TH relative to the frame of the faucet’s
base TB :

TH = TB ·T(v) ·R(z, α) ·R(y, β) (4.10)

Using the two angles of rotation α, β, I define the logic of the water flow w and water temperature
t as

w = −β ·m1 + a

t = α ·m2 + b
(4.11)

where m1,m2 are some scaling factors that map the angles to real-world quantities, b is an offset
to set a neutral temperature, and a is an offset to model a leaky tap. Adding the frames with
associated geometry to a GeometryModel TB ,TH and the expressions w, t to the same model,
enables me to query the model for information. I can query from it the parameter sets of w, t:
V (w) , V (t) using these sets I can query the model for geometry that is affected by them. Once
I have that geometry, I can infer from the gradient of the associated pose how the geometry
needs to be moved to change w, t to a goal configuration. Since this is venturing into the space of
solving tasks in Kineverse, I will leave the example at this and let Sections 4.2.1 and 4.2.3 give
fuller pictures.

4.2 Task Integration

The experiments in the previous section were focused on examining the modeling capabilities
of Kineverse. In this section, I present three example applications using Kineverse. The first is
a task, which shows how the symbolic expressions in Kinverse can be used to do inference and
reasoning. The other two tasks are real-world inspired, and executed in a simulated environment.
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The goal of this evaluation is to see if Kineverse can be utilized in real robotic problems and how
it performs in a running system.

4.2.1 Conditional Degrees of Freedom

Figure 4.16 An example of a lockbox. Left: Closed; Right: Opened

More complex mechanisms require boolean switches to be modeled accurately. To showcase that
such models can be expressed in Kineverse, a model of a lockbox is created and a simple algorithm
exploring the box and opening it is defined. The lockbox is chosen due to the interest in the
problem in recent research [17, 3]. A depiction of a typical lockbox can be seen in Fig. 4.16. It
should be noted, that the model presented in this section is definitely not the ideal representation
of a lockbox. Neither is the algorithm the best algorithm to devise a sequence of interactions to
open such a box. This example exists as a proof of concept, that there is a way of constructing
such mechanisms in the world of Kineverse.

Model

The lockbox has six degrees of freedom a, b, c, d, e, f , which lock each other in the following way:

• a unlocks when b > 0.4 and c > 0.6.
• b unlocks when d > 0.8.
• c unlocks when d > 0.5 and e > 1.0.
• d unlocks when e > 0.9.
• e unlocks when f > 1.2.
• f is free.

A graphical representation of this mechanism can be found in Fig. 4.17.

To express this mechanism in Kineverse, the operations ≺,≻,⋏ from Section 3.6.1 are required.

The locking mechanism is encoded by constraining the DoFs’ velocities.
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Figure 4.17 Locking Mechanism. Each arrow is read as locks, e.g f locks e

−0.4(b ≻ 0.4⋏ c ≻ 0.6) ≤ ȧ ≤ 0.4(b ≻ 0.4⋏ c ≻ 0.6)

−0.1 ≤ ḃ ≤ 0.1(d ≻ 0.8)

−0.1 ≤ ċ ≤ 0.1(d ≻ 0.5⋏ e ≻ 1.0)

−0.1 ≤ ḋ ≤ 0.1(e ≻ 0.9)

−0.1 ≤ ė ≤ 0.1(f ≻ 1.2)

−0.4 ≤ ḟ ≤ 0.4

(4.12)

At first glance, these constraints can be confusing to understand. Looking at the constraint of ė
for an example, it can be read as follows: The velocity of e is always greater than −0.1. It is at
most 0.1 if f is in a position greater than 1.2 otherwise it is at most 0. Note that this constraint
model encodes both a hard limit on the velocity, and the locking mechanism. In addition to being
velocity constrained, the DoF are also constrained in their positions as follows:

−∞ ≤ a ≤ ∞

0 ≤ b ≤ 0.7

0 ≤ c ≤ 0.8

0 ≤ d ≤ 0.9

0 ≤ e ≤ 1.1

−∞ ≤ f ≤ ∞

(4.13)

It should be noted that all locking constraints, with the one of a being the exception, lock their
DoF asymmetrically. These asymmetrically locked DoF can always be moved in the negative
direction of their configuration space.2

These constraints are added to a Kineverse model A from where they can be queried by the lock
opening algorithm.

2The decreasing value of a DoF’s unlocking position is chosen to for aesthetic reasons only.
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Lock Opening Algorithm

The input to the algorithm is an articulation model A, a state q which can completely ground
the model (V (A(q)) = ∅), and a set of goal constraints G. The goal of the algorithm is to build a
new goal constraint set so that the original problem becomes movable. The problem is considered
movable, when the velocities of the DoF are not limited in the direction of the goal. If the goal
is a = 4 and a(q) = 2 then the problem is considered movable if there is no constraint enforcing
ȧ ≤ 0. The constraint set generated by the algorithm can be used to build a Giskard motion
problem (cf. Section 3.6.2) which will then generate a trajectory to open the lockbox. The exact
definition of the algorithm is laid out in Algorithm 1.

The set of goal constraints is built by iterating over the constraints in the initial goal set G. If
all constraints are met, the algorithm is done. If a constraint c is not satisfied, it is determined
in which direction d the value of the constrained expression ec needs to be changed to satisfy c.
The direction is positive if ec(q) < ιc(q) and negative if ec(q) > υc(q). Due to the requirement
ιc(q) ≤ υc(q), the direction can be determined as d = sgn(ιc(q)− ec(q) + υc(q)− ec(q)).

To determine, whether ec can change in direction d, the constraint set C ⊆ C is queried
from A so that it is the set of all constraints affecting any parameter of gradient ∇ec: C =

{c′ | K (∇ec) ∩ V (ec′) ̸= ∅}. For each x ∈ K (∇ec) a direction dx needs to be determined in
which x needs to change in order for ec to change in direction d. This is done using the helper
function D, which is defined as:

D(x) = sgn∇xec(q) · d (4.14)

For each x all constraints Cx are collected, which limit x from changing in direction dx. If there
is an x with Cx = ∅ nothing needs to be done for constraint c since it has at least one open DoF.
Otherwise, new goal constraints N are defined, which enforce an opening of the binding limits.
This new set is then expanded recursively.

Result

Using the simple conversion strategy described in Section 3.6.2, the constraint set returned by
the algorithm can be converted into a Giskard motion problem. The initial goal in the scenario is
a = 1.2, which is encoded as G = {(1.2 ≤ a ≤ 1.2)}. The final set G′ is going to be viewed as soft,
equally weighted task constraints. As a simplifying assumption, all variables in the constrained
expressions of set G′ are assumed to be controllable and weighted equally. The hard constraints
Z of the motion problem are queried from model A as the constraints affecting the controlled
degrees of freedom.
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Algorithm 1 Simple Lockbox Exploration
function exploreConstraints(A = (D, C),q, G,H)

for all c ∈ G do
d← sgn(ιc(q)− ec(q) + υc(q)− ec(q))
if d ̸= 0 then

D ← D(x) = d · sgn∇xec(q) ▷ Directionality function for gradient components.
M ← getLimitingConstraints(D,K (∇ec) , C)
if ¬∃(x, ∅) ∈M then ▷ All DoF are blocked

N,H ← generateSubgoals(D,M,H)
if N ̸= ∅ then

G← G∪ exploreConstraints(A,q, N,H)
else

return Problem is unsolvable.
end if

end if
end if

end for
return G

end function

function getLimitingConstraints(D,X,q, C)
M ← ∅
for all x ∈ X do

C ← {c | x = ec ∧ c ∈ C} ▷ Get all constraints directly affecting x
M ′ ← ∅
for all c ∈ C do

if D(x) < 0 ∧ ιc(q) ≥ 0 then ▷ Desired change is negative and blocked
M ′ ←M ′ ∪ {c}

else if D(x) > 0 ∧ υc(q) ≤ 0 then ▷ Desired change is positive and blocked
M ′ ←M ′ ∪ {c}

end if
end for
M ←M ∪ {(x,M ′)}

end for
return M

end function

function generateSubgoals(D,M,H)
N ← ∅
for all (x,C) ∈M do

for all t ∈ C do
if D(x) > 0 ∧ V (υt) ̸= ∅ then ▷ Bound is variable

N ← N ∪ {(υt ≺ 0),∞, υt)} ▷ Add new goal making ut positive
else if D(x) < 0 ∧ V (lt) ̸= ∅ then ▷ Bound is variable

N ← N ∪ {(−∞,−(ιt ≻ 0), ιt)} ▷ Add new goal making ιt negative.
end if
H ← H ∪ {t} ▷ Add t to touched constraint set

end for
end for
return N,H

end function
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The algorithm generates the following Giskard constraints:

1.2− a ≤ ȧ ≤ 1.2− a (4.15)

(f ≻ 1.2) ≺ 0 ≤ 0.1 · ḟ ≤ ∞ (4.16)

(e ≻ 0.9) ≺ 0 ≤ 0.1 · ė ≤ ∞ (4.17)

(d ≻ 0.5) · (e ≻ 1.0) ≺ 0 ≤ 0.1 · (ḋ+ ė) ≤ ∞ (4.18)

(d ≻ 0.8) ≺ 0 ≤ 0.1 · ḋ ≤ ∞ (4.19)

(b ≻ 0.4) · (c ≻ 0.6) ≺ 0 ≤ 0.4 · (ḃ+ ċ) ≤ ∞ (4.20)

The constraints relate to the original problem in the following way: Eq. 4.15 is the original
goal, driving a towards 1.2. Eq. 4.16 is the first unlocking goal in the unlocking process. Its
goal is to unlock e by moving f . The constrained term is the derivative of the upper bound
placed on ė, which needs to be positive to move f towards the position in which it unlocks e.
At first glance, the factor of 0.1 scaling the velocity is somewhat puzzling. It originates from the
original constraint placed on ė through which the locking mechanism is encoded. In that original
constraint, a hard velocity limit of 0.1 is set, which carries over to the derivative. The left-hand
side of the constraint is the driving term, which forces the controlled term, and by extension ḟ ,
to be positive. The condition f ≻ 1.2 is the original unlocking condition from the ė constraint.
The comparison ≺ 0 serves to invert the truth value of the condition. Read in natural language,
the mechanics of this constraint can be read as While f is not greater 1.2, ḟ must be positive.

The remaining constraints are structured the same way, with Eq. 4.17 unlocking d, Eq. 4.18
unlocking c, Eq. 4.19 unlocking b, and Eq. 4.20 unlocking a.

A discrete time stepping integration of the resulting motion problem f(q) is performed until G
is satisfied, or for a maximum of 200 iterations. The velocities generated by f(q) are integrated
using a time step of ∆t = 0.1.

The generated motion problem successfully opens the lockbox, by sequentially unlocking the
individual degrees of freedom, as can be seen in the plot in Fig. 4.18. The approximation of
boolean expressions works as expected, switching directly between 0.0 and 1.0.

When looking at the plot there are a couple details worth a small discussion. Most notably, some
plots stop sharply, while others stop gradually. This is caused by the positional limits of the DoF.
As e and a approach their positional limits, their velocities get limited proportionally to avoid
them overshooting the positional bound. A more subtle detail is the overall plot of c. By the
design of the experiment, c locks a while its position is below 0.6, however the plot rises up to
∼ 0.7 before it stops. This is caused by the definition of the gradient for ⋏. As stated in 3.19, the
gradient ∇(a⋏ b) is the sum of the gradients of the two arguments ∇a+∇b. This definition does
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Figure 4.18 Resulting plot from solving the generated control problem. Top: Position of the DoF;
Bottom: Value of the locking expression of each DoF.

not cover the dynamics of the conjunction accurately, as it does not express, that an argument
has no positive effect on the truth value anymore once it is itself true. There is no simple way
of capturing this dynamic because it is asymmetrical. A simple re-definition of ⋏ integrating the
truth value of the two terms:

∇(a⋏ b) = (a ≺ 1)∇a+ (b ≺ 1)∇b (4.21)

does eliminate the effects observed in the plot, however it does not capture that a currently true
component can affect the truth value of the overall term negatively, as that term’s gradient is
simply 0.

While the algorithm works in this setup, it should be noted that it would fail in a scenario which
requires a DoF to be in two different positions over the course of the unlocking process. If, for
example, d in the given scenario had to be ≥ 0.4 to unlock c but ≤ 0.2 to unlock b, this algorithm
would not be guaranteed to produce an unlocking trajectory. This would be the case, because
the generated problem does not encode any kind of state about the unlocking process. It only
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encodes whether the DoF are unlocked, but does not keep track of the unlocking process as a
whole, as in It is now time to unlock d so b and c can be unlocked.. Given such an encoding, the
driving terms of the problem could change as the unlocking process takes place. Intuitively such
an encoding is possible, by expressing the desired sub-goal state as a conjunction, multiplying
it with a driving term and summing over all these drivers, however investigating this intuition
further is out of the scope of this example.

4.2.2 Simple Configuration Space Tracker

When interacting with an articulation model, it is important to be able to estimate and track
the model’s current state q. This section describes a simple algorithm tracking the configuration
q of an articulated object based on observations of the parts of its poses in SE(3).

Poses of individual parts of a model can be estimated using markers like AprilTags [36], or
increasingly even using non-annotated approaches like PoseCNN [37].

Model

The algorithm requires an articulation model A, a set of frames X from the model and a contin-
uous stream of observations Yt ⊆ SE(3) of the object’s individual parts. It outputs a mapping q
minimizing the distance between the projected model state X(q) and Yt.

The algorithm formulates the problem of estimating q as an optimization problem. The problem
uses two metrics to converge the projected state of the model and the observed state. The first
seeks to align the positions T (xi) of the model parts with their observed positions T (yi) by
minimizing the Euclidean distance di:

di = ∥T (xi)− T (yi)∥ (4.22)

The second metric aims at reducing the rotational difference between the projected rotation
R(xi) and the observed rotation R(yi). There are multiple ways of assessing rotational offset.
The most intuitive one might be to measure it as the difference in rotations around the three
major axes, however that approach suffers from gimbal lock, a non-continuous configuration
space and non-linear convergence. A better approach would be to measure the dot products
of the rotation matrices’ columns. This metric does not suffer from gimbal lock, or non-linear
convergence, however it is difficult to combine the products into a single metric and convergence
becomes slow towards the end of the alignment. Even better is to measure the difference between
the matrices combined axis-angle representations. This metric has practically no downside, except
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for its numerical instability and the rather long expressions it generates. A simple, yet successful
metric is to directly assess the difference in the rotation matrices’ components:

∆Ri =

√√√√ 3∑
i

3∑
j

(R(X)i,j −R(Y )i,j)2 (4.23)

This metric converges as quickly as the axis-angle metric, but with far less variance in its final
result.

The problem is solved iteratively using the Giskard optimization problem formulation. For each
x ∈ X two soft constraints are added, one for each of the two metrics, as shown in Eq.+4.24.
The relevant degrees of freedom of the model are identified by the sets of free variables in the
two metrics: V (di) ∪ V (∆Ri). Their relevant constraints are queried from A and added to the
problem as velocity constraints while adjusting for the integration factor λ. Note that the actual
constraints on velocities are not taken into account. They are left out since this algorithm only
operates on a single observation and does not estimate dynamical properties of the model.

−d1 ≤ ḋ1 ≤ −d1
...

...

dn ≤ ḋn ≤ −dn
−∆R1 ≤ ˙∆Ri ≤ −∆R1

...
...

∆Rn ≤ ˙∆Rn ≤ −∆Rn

(4.24)

ROS Integration

The tracker is built to be used in a ROS environment. It uses the Kinverse model client to query
the object parts to be tracked from the Kineverse server. The observations are presented to the
tracker as an array of stamped poses which are published on a topic. The tracker inserts these
poses into the generated optimization problem and iterates on the problem for a maximum of k
steps. The result of these iterations is published on another topic as a ValueMap message which
can be interpreted by the TF publisher described in Section 3.4.6. The number of iterations is
fixed to avoid irregular tracking updates. Fig. 4.19 shows the dataflow in the tracking system.
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Figure 4.19 Dataflow in the tracking scenario.

Evaluation

The tracker is evaluated on a model of the IAI kitchen3. The evaluation is performed in two sce-
narios. The first scenario evaluates the tracker quantitatively, by sampling configurations for the
kitchen, computing the object poses, adding noise and then estimating the original configuration
from these noisy poses.

The second evaluation is qualitative. The tracker is run on observation data, generated in a
simulated environment 4. The environment contains a fetch robot in addition to the IAI kitchen.
The articulation models of the robot and the kitchen are available on the Kineverse server. Pose
observations of the kitchen’s parts are generated using a plugin to the simulator. The plugin
approximates the field of view of the robot using a view cone which is based on the fetch’s
horizontal field of view of 54◦. If the center of an object is within this cone, an observation for
that object is going to be generated.

In both scenarios, noise is added to the observed poses. The noise is assumed to be normally
distributed and independent in location and rotation. For both location and rotation a random
point is sampled from the surface of a sphere. In the case of the positional noise, the point is
interpreted as a translation vector and scaled to a random, normally distributed length with
mean 0. In the case of the rotational noise, the point marks the axis of rotation. The angle is,
once again, determined by sampling it from a normal distribution with mean 0.

In the second scenario, the deviation of the noise σ is determined using the distance d of an
object to the camera. A quadratic function is chosen to model the noise increases with increasing
distance:

σ = 2αd − 1 (4.25)

This scaling behavior is added to mimic the increasing noise in depth camera data. The obser-

3IAI kitchen: https://github.com/code-iai/iai_maps
4IAI Bullet Sim: https://github.com/ARoefer/iai_Bullet_sim
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Figure 4.20 Plots summarizing the results from the quantitative evaluation of the tracker. First
row: Final error at differing linear and angular noise tracking 23 DoF from observing
60 poses; Second row: Average number of iterations and average iteration duration
across all noise levels as a function of DoF.

vations are sent out on a ROS topic as an array of stamped poses.

Results - Quantitative Evaluation

All quantitative experiments are performed on 200 randomly sampled configurations, tracking
up to 60 object poses with up to 23 degrees of freedom. The algorithm employs an iterative
gradient descent scheme. The iterations are bounded to a maximum of 10 per configuration and
the iteration is stopped early if no bound of the optimization problem is violated by more than
0.001. The experiments are executed using a single thread on a desktop style computer with an
Intel Core i7-6700, 16GB of memory, running Ubuntu 18.04 and ROS Melodic.

The algorithm is evaluated with an increasing number of poses and DoF to track. For each pose
set, varying noise on the linear and angular parts of the observed poses are applied. Over the
course of the evaluation the average error in the final configuration is tracked as a measure of
accuracy of the final result. Further, the error deviation across the 200 samples is tracked as a
measure of reliability, an the maximum final error is recorded to see how bad the worst outliers
are. Since the tracker is ideally an online component, the average number of iterations until
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Figure 4.21 Result of tracking algorithm with no noise added to the observations. Green: Ground
truth; Blue: Tracked configuration. Since they are so close, they are almost indistin-
guishable.

convergence and average duration of an iteration are recorded as well. The results from largest
experiment configuration, containing the full 60 poses and 23 DoF, collected in Table 4.2. To give
a better feel for the trend in the data, the results are also presented graphically in Fig. 4.20. Fig.
4.20 also plots the mean number of iterations per sample and the mean duration of an iteration
as a function of DoF.

To prove that the implemented algorithm works under ideal circumstances, it is first tested
without adding any noise to the poses computed from the random configurations. As can be
seen in Table 4.2, the average final error is negligible with no significant spread or outliers. The
iterative process ends early, after an average of 3.65 iterations. The average duration of a step
in the iteration is 10 ms, which makes for an average update frequency of 27.4 Hz given the
average number of iterations. It is fair to conclude, that the algorithm itself is sound and works
as expected. Fig. 4.21 shows an example result of a tracked configuration.

The algorithm is then evaluated under increasing noise in the observation. The noise in position
and rotation increases linearly in 4 steps up to a deviation of 0.15 m in position and 0.175 rad ≡
10 deg in rotation. Fig. 4.22 shows the effect of 0.1 m linear and 10 deg angular noise on the

Linear σ Angular σ ∅ Error σ Error Max Error ∅ Iterations Iteration Duration

0.0 m 0.0 rad 2× 10−5 2× 10−5 1× 10−4 3.65 13.0 ms

0.038 m 0.044 rad 0.015 0.016 0.059 6.82 14.8 ms

0.075 m 0.087 rad 0.030 0.026 0.107 7.88 15.3 ms

0.113 m 0.130 rad 0.044 0.034 0.154 8.41 15.6 ms

0.150 m 0.175 rad 0.057 0.041 0.190 8.73 15.7 ms

Table 4.2 Performance of tracking algorithm given different linear and angular noise.
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Figure 4.22 Tracking challenge. Left: Ground truth configuration; Right: Poses of objects with
added noise.

poses.

As the noise increases, the average final error increases linearly up to 0.057. Note that this error
is unit-less as it is measured in the configuration space of the model. While the other metrics
increase as well, they do so sublinearly, as can be observed in Fig. 4.20. Even though this is the
case, the tracker would not perform well at tracking many moving objects at higher levels of
noise. Given the final average iteration duration of 13.0 ms and an average of 8.73 iterations, the
tracker would produce updates at only 8.84 Hz. While the this update frequency is very high,
the experiment with a varying number of DoF suggests that higher update rates are possible
with fewer number of DoF. Looking at Fig. 4.20 again, tracking of 10 DoF seems to be possible
at a frequency of up to 38 Hz. Another consideration to take into account when estimating the
real-world impact of these results is the aggressive noise model. The noise model that is applied
to the poses, does not take the geometry of the objects into account which is a major source
of noise in real observations. Overall this should inspire confidence, that the tracker will not
perform worse with real observations than it does with the generated ones.

Results - Qualitative Evaluation

The qualitative experiments are performed under different noise levels, much like the quantitative
experiments. The experiments are recorded on video, which is then used to assess the tracker’s
performance when tasked with tracking a model’s configuration over time.

The tracking task in this experiment is simpler than it was in the quantitative experiment. Only
12 poses are tracked and the maximum number of iterations is limited to 3 per update. In all
experiments these parameters yield a stable update rate of 28 Hz. Each iteration is initialized
with the last computed configuration qt−1. The noise is controlled by the factor α in Eq. 4.25.
Table 4.3 displays the resulting deviation at different distances from the camera.

The recorded video can be found on YouTube5, Fig. 4.23 gives an impression of the setup of the
5Tracker behavior with simulated observations: https://www.youtube.com/watch?v=_cIsLP-mdvw
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Figure 4.23 Screenshot of the tracker evaluation using simulated observations. Left: Simulated
environment; Right: Tracking result.

evaluation. Without any noise added, the tracker performs perfectly, as was to be expected given
the quantitative evaluation. There seems to be a slight delay in the updates, which is likely to
be caused by the fixed 3 iterations. As the noise increases, it becomes very apparent, that this
tracking model lacks a damping term to suppress the worst outliers of the noise. At a noise level
of α = 0.01 the configuration merely seems somewhat jittery, at a level of α = 0.03 the jittering
becomes so bad that even objects close to the robot start jumping by multiple centimeters. At
a level of α = 0.06 the jittering of especially distant objects becomes so strong that it looks like
the configuration of the kitchen is determined completely randomly.

All in all this evaluation does show that it is possible to integrate the tracking algorithm in a
real-time system, be it on a smaller problem space. There is room for enlarging the problem
space while maintaining real-time capability. One way of achieving this could be a very selective
update strategy, which only tracks the part of the model based on the objects that are currently
in view. In the current implementation no optimizations of this kind exist, forcing the solver to
always solve for all DoF, even if there is no new data that affects them.

α 0.0 0.01 0.03 0.06

σ at d = 1 m 0.0 0.0069 0.021 0.04

σ at d = 2 m 0.0 0.014 0.043 0.09

σ at d = 3 m 0.0 0.021 0.064 0.13

Table 4.3 Noise deviation at different distances and α.
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4.2.3 Interacting with Articulated Objects - Simple Pushing

In the previous example I applied Kineverse to a perception task and evaluated its performance.
In this example, I will use Kineverse to solve a manipulation task which requires the interaction
with an articulated object - the IAI kitchen.

The task is simple: The robot needs to keep the kitchen in an orderly state. Using the config-
uration tracker from the previous section, the robot is able to perceive the current pose of the
kitchen. The kitchen is considered to be ”in order” when its configuration is q = 0. The robot
exploits the fact that it is standing in front of the kitchen and uses pushing to close doors and
drawers.

Model

As stated above, the robot is using a pushing strategy to fulfill its task of keeping the state of
the kitchen at 0. First and foremost, a model of pushing is required to do so.

A fundamental challenge in manipulating an articulated object is the fact, that such an inter-
action is either causing a kinematic loop, or requires a restructuring of the kinematic tree to
avoid such a loop. Restructuring the tree to attach the object being manipulated at the end of
the robot’s endeffector is only a solution in scenarios in which the object is freely movable. If
it is not, constraints are going to be needed to enforce the constrained motion of the object.
Given that constraints are going to be needed in most cases, the restructuring can be skipped
and constraints can be used to synchronize the motions of the endeffector and the manipulated
object directly. Fig. 4.24 the different models that result from applying either strategy in the
push scenario.

The goal is specified with respect to the configuration of the kitchen and not connected to
the state of the robot. Because of this specification, no gradient towards the robot’s DoF can be
generated. To still create motions solving the task, a trick is employed: The DoF of the articulated
object are added as controllable variables to the motion problem. The constraints connecting the
robot’s endeffector and the articulated object have to be chosen so that the motion the robot
makes can be used to produce the motion the object makes.

The constraints modeling the push require an actuated point r, a point on the object p and the
contact normal n pointing from the object’s surface towards r. The points r,p are the closest
points on the robot’s endeffector and object respectively. They and the contact normal can be
queried from the Bullet physics backend. The points and the vector are visualized in Fig. 4.25.

The first constraint enforces the general logic of a push: It cannot pull. This is done by limiting
the dot product of the velocity vector ṗ and the contact normal n to be at most 0:
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Figure 4.24 Two different strategies for modeling the kinematics of a push in an existing articu-
lation model. Solid arrow: Forward kinematic connection; Dashed arrow: Constraint
on relative pose of two objects.

Figure 4.25 Points and vectors used to generate motions for a push. r (red): Contact point on
the robot; p (red): Contact point on the object; n (blue): Contact normal; −∇p
(yellow): Negative gradient of p; Green arrow: neutral tangent; v (dark red): Active
tangent.
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−∞ ≤ ṗ · n ≤ 0 (4.26)

The second constraint enforces the impenetrability of the robot and the object, by constraining
the signed distance d = (r− p) · n between the two bodies:

0 ≤ d ≤ ∞ (4.27)

Lastly, a constraint for the velocity of every x ∈ V (p) is added to keep the object from moving
without any contact being made. This is done using the ≺ function to compare d to a tiny
threshold value ϵ:

−∞(d ≺ ϵ) ≤ ẋ0 ≤ ∞(d ≺ ϵ)
...

...

−∞(d ≺ ϵ) ≤ ẋn ≤ ∞(d ≺ ϵ)

(4.28)

These constraints are combined with two task constraints. The first is the configuration goal for
the object, which is q = 0. The second seeks to make contact with the object to enable actually
affecting change in the configuration:

0 ≤ q ≤ 0

0 ≤ d ≤ 0
(4.29)

When these constraints are converted to Giskard constraints, their bounds are expanded to
include an integral term, to avoid persistent state error which would keep the objects from
making contact, or reaching their goal.

One other goal constraint is added to the motion problem. The original constraints specify a
simple model of a push, however they do not help to move the point of contact to a location
from which the push can actually be performed. Fundamentally, the contact normal and the push
direction have to be aligned, which would be easy if a gradient for the surface normal existed.
Since the normal is queried from the physics backend this is not the case. As a work-around, a
heuristic is used to navigate around the object’s geometry to a point where the normal of the
desired motion and the contact normal align. The heuristic consists of a displacement vector v
and a distance metric dx which are described in Eq. 4.30. The distance metric dx replaces d in
the task constraint, which drives the robot to make contact with the object. It measures the
distance between the actuated point r and a point which is offset from p along v. The offsetting
vector v lies in the plane described by the contact normal n and points in the direction which
most strongly decreases the dot product of the actuated point and the direction towards the goal
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of q = 0. The definition of v exploits domain knowledge by assuming, that the goal is always in
the negative direction of the gradient. The offset v is scaled based on the cross product of the
contact normal and the gradient ∇p. This is one of three scaling model that were tried and the
most successful one. It drives the motion of r around the object, while not diverting it too much,
while r is far away.

v = (−∇p× n)× n

dx = ∥p + v · ∥−∇p× n∥ − r∥
(4.30)

For practical applications a third constraint is added to keep the robot looking at the object so
it can keep tracking it during the interaction.

Results

The motion generation is evaluated by using it to close doors and drawers in the IAI kitchen.
12 parts of the kitchen are interacted with - 9 drawers, 3 doors two of which open vertically.
Every object’s configuration is set to 0.4 at the beginning of the experiment, while the remaining
kitchen’s configuration is set to 0. The robot always starts in the same pose at the same location
which is centrally located approximately 1.2 m away from the kitchen. The experiment is run
with both a PR2 and a fetch. For both robots, the link used to make contact with the object is
specified. In the case of the fetch, two modes are explored: In the first, the fetch is equipped with
an omnidirectional base like the one the PR2 has, in the second mode, the fetch is equipped with
the differential drive that it is manufactured with in real life. These modes are added to isolate
whether any failures on the fetch are due to the limited kinematics of fetch’s base, or whether
they just do not map easily to another robot.

The motion generation is performed using an integration step factor 0.1 and a maximum of 500
iterations. Over the course of the generation, iteration duration is tracked to determine whether
the built model can be evaluated fast enough to be integrated in an online control loop.

The recorded videos can be found on the attached CD, or online678. Fig. 4.26 shows a generated
motion as a series of images. The iteration times are collected in Table 4.4.

In the case of the robots with an omnidirectional base, the motions look plausible and transfer
well between the two different robots. The footage from the planned trajectories shows some
jitter in the position of the robot endeffector, when it and the target object are in contact. The
jitter is caused by the geometry of the target object, which is always a handle in this scenario.

6Fetch pushing with omni base: https://youtu.be/hAuz7nMFNrA
7Fetch pushing with differential drive: https://youtu.be/WlgcCcJwoBA
8PR2 pushing: https://youtu.be/q77DOFXee-o
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Figure 4.26 Planned motion of the fetch robot closing a drawer. The red arrow marks the closest
direction between drawer and robot. Left: Initial pose; Center Left: Robot approaches
closest point on object’s geometry; Center Right: Contact is made, enabling the use
of the drawer’s DoF in planning; Right: The drawer is closed, the goal satisfied.

The geometry of the handles is very narrow, which leads to large changes in the contact normal
when over correcting the endeffector’s position slightly.

The evaluation using the fetch with the differential drive shows that a different navigation func-
tion is needed for this kind of base. While the motion problem does work to solve the task, the
solutions become less stable towards the far end of the kitchen.

The performance evaluation in Table 4.4 shows that the motion generation can be run at a
stable 63− 74 Hz - depending on the robot. This makes the motion problem suitable for online,
closed-loop control.

4.2.4 Full Kitchen Pushing System

In a final evaluation, I combine the tracker from Section 4.2.2 and the pushing motion from
Section 4.2.3 in a simple behavior which I deploy in a simulated environment to monitor the
kitchen and restore it to order when any drawer or compartment is left open.

∅ Iteration Duration σ Iteration Duration

Fetch w. differential drive (18 DoF) 14.3 ms 0.77 ms

Fetch w. omni-base (19 DoF) 13.5 ms 0.28 ms

PR2 (49 DoF) 15.7 ms 0.71 ms

Table 4.4 Average iteration duration and deviation in the duration in the kitchen pushing task,
using different robots.
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Figure 4.27 Data flow in the combined tracking and pushing system.

Figure 4.28 State machine of pushing behavior.

System Setup

The system used in the evaluation consists of four components: A Kineverse server, a tracker,
a push behavior and a simulation. The Kineverse server provides the articulation models of the
kitchen and the robot to the tracker and the push behavior. As in the evaluation in Section 4.2.2,
the tracker receives simulated observations and determines the configuration q of the kitchen.
This configuration is sent to the push behavior which combines it with simulated robot state
data to compute a motion command for the robot, which it sends to the simulator. The complete
data flow is depicted in Fig. 4.27. All these four components are implemented as nodes in a ROS
system which communicate over ROS topics.

Behavior

The pushing algorithm is embedded in a behavior consisting of two states. The first simply
monitors the value of q. When q ̸= 0 the machine transitions to the second state, which generates
a pushing problem for the first variable x ∈ q which is x ̸= 0 and then executes the pushing
motion until x = 0. The pushing problem is generated by querying the articulation model A for
the set G of geometry that is affected by x. The pushing problem is then generated between the
endeffector and the DoF x with G being used to compute contact normal and closest point. A
practical challenge is created by the Bullet physics engine which is used to compute these points:
The closest points are not exactly on the surface of the objects, when the objects are meshes. This
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inaccuracy only seems to affect this particular calculation, but not the actual collision detection
during the physics calculation. The mismatch in distance calculation and collision detection leads
to the motion controller assuming that it has made contact with an object when it actually has
not. To combat this, I move the contact point back along the contact normal by 8 cm.

To get the robot to look around, I added an additional constraint which makes its gaze wander
up and down the kitchen. This behavior is hard-coded and uses neither the articulation nor any
other kind of data available in the scenario.

Results

As with the previous test, this experiment is also captured on video and evaluated based on the
recording. The evaluation starts with the robot standing at the origin of the scene, sweeping the
kitchen with its gaze. To trigger the manipulation, I open a drawer or door of the kitchen by
dragging it open in the simulation. If the robots fails at closing the opened object or gets stuck
doing so, I close the object manually, which returns the robot to its idle state. The video of the
experiment can be found on the CD attached to this thesis, or on online9.

The experiment shows that it is possible to combine the object tracker and the simple pushing
motion in a system to solve this task of keeping the simulated kitchen in order. It also reveals a
problem in that is caused by the lack of noise suppression in the tracker and another problem
that is caused by the mismatch in Bullet’s distance calculations and the collision detection. The
lack of noise suppression makes it impossible to run the experiment with any kind of noise added
to the perception. The noise in the tracked configuration leads the behavior to constantly believe
that some part of the kitchen has been left open and needs fixing. The calculation mismatch in
Bullet and the simple fix for, combined with the navigation heuristic introduced in Eq. 4.30, lead
to strong oscillating motions in the robot’s endeffector in some interactions. When looking at
the video, one can observe the contact normal rapidly changing direction, as the robot gets close
to the object it is trying to push. This is followed by a counter motion, which tries to navigate
around the object for a better point to push at according to this normal.

9PR2 pushing objects in simulated kitchen environment: https://youtu.be/95TQbioTAog
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Conclusion

In this thesis I set out to investigate the feasibility of building an articulation model framework
which uses symbolic mathematical expressions to encode models directly as their mathematical
mechanisms. I argued for this approach on the basis of two shortcomings I see in existing,
descriptive frameworks. As mobile manipulators become more and more ubiquitous and interact
with new environments, they will need the ability to incorporate newly observed articulation
models into their behaviors. The existing frameworks for describing articulation models take an
abstract, descriptive approach. Each of these descriptions need to be translated into an internal
representation, which invites implementation errors and ambiguous interpretations. At the same
time, this abstract description causes a lot of implementation overhead when the description
language is extended, as a human developer will have to integrate the language update into the
manipulator’s software. Further, I stated that future articulation models needed to be dynamic,
to adapt to observations that were made by mobile manipulators as they interact with their
environment and should support being exchanged in a networked system.

I posited that the problem of implementation overhead would be solved in a new framework if
that framework enabled its users to implement algorithms which use articulation models but are
agnostic about the articulations actually present in the model.

In pursuit of answering the primary question of feasibility, I first proposed a formal model in this
thesis which represents an articulation model as a tree of expressions with free variables and a
set of constraints. As an extension to regular mathematical expressions I introduced the concept
of the Augmented Gradient which maintains information about with respect to which variables
a term was differentiated and allows for additional derivative expressions which enables the
model to cover both positional and differential kinematics. To avoid enforcing a linear kinematic
structure, I describe the logic behind an articulation model as a sequence of operations that build
up the expressions of the model incrementally. I implemented the concept as a ROS package called
Kineverse with a special focus on its integration into the ROS runtime environment.

In my evaluation I was able to demonstrate that the modeling capabilities of Kineverse can rival
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those of URDF, the most widely used articulation model framework in the ROS ecosystem. I
demonstrated further that it is possible to implement algorithms which operate successfully on
a kineverse model without any further knowledge of the exact articulations. According to the
supposition I made before, this is an indicator that the articulation model would be able to scale
when extended, without causing implementation overhead.

As it stands, the model has been applied successfully to rudimentary object tracking and motion
generation tasks. Its applicability in articulation model estimation has not been evaluated yet.
In future work, the model should be applied that problem domain and the integration with more
perception and manipulation tasks in general should be attempted.

From a practical perspective I view Kineverse as a successful proof-of-concept. The task-oriented
evaluations have shown that it is possible to utilize the implementation in practical applications.
From the experience I gained when realizing the tasks practically using Kineverse, I must say
that I like the implementation of the articulation model. Using the models is easy and the query
functions are helpful when collecting the relevant constraints and geometry for the task. The
operations’ API, on the other hand, is somewhat cumbersome to use. Adding new operations
is not as easy as I would have liked it to be. Improvements to the API would help Kineverse’s
adoptability.

Publication of the Software

The Kineverse software, as well as the code for the experiments is hosted on GitHub. Both
repositories are equipped with readme files containing installation instructions and instructions
to reproduce the experiments. It is provided under the MIT license, allowing non-commercial and
commercial use of the software, as well as redistribution and modification. While the code may
develop further over time, the final version of the software for this thesis is stored on the branch
masters_thesis of both repositories. A copy of the software is also included on the CD that is
submitted with this thesis.

Package Repository

kineverse https://github.com/ARoefer/kineverse.git

kineverse_experiment_world https://github.com/ARoefer/kineverse_experiment_world.git
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